Loading…
Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists
Type 2 diabetes mellitus (T2DM) results from compromised pancreatic β-cell function, reduced insulin production, and lowered insulin sensitivity in target organs resulting in hyperglycemia. The GLP-1 hormone has two biologically active forms, GLP-1-(7–37) and GLP-1-(7–36)amide, which are equipotent...
Saved in:
Published in: | European journal of medicinal chemistry 2015-10, Vol.103, p.175-184 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Type 2 diabetes mellitus (T2DM) results from compromised pancreatic β-cell function, reduced insulin production, and lowered insulin sensitivity in target organs resulting in hyperglycemia. The GLP-1 hormone has two biologically active forms, GLP-1-(7–37) and GLP-1-(7–36)amide, which are equipotent at the glucagon-like peptide-1 receptor (GLP-1R). These peptides are central both to normal glucose metabolism and dysregulation in T2DM. Several structurally modified GLP-1 analogues are now approved drugs, and a number of other analogues are in clinical trials. None of these compounds is orally bioavailable and all require parenteral delivery. Recently, a number of smaller peptidomimetics containing 11–12 natural and unnatural amino acids have been identified that have similar insulin regulating profiles as GLP-1. The α-conotoxins are a class of disulfide rich peptide venoms isolated from cone snails, and are known for their highly constrained structures and resistance to enzymatic degradation. In this study, we examined whether 11-residue peptidomimetics incorporated into α-conotoxin scaffolds, forming monocyclic or bicyclic compounds constrained by disulfide bonds and/or backbone cyclization, could activate the GLP-1 receptor (GLP-1R). Several compounds showed potent (nanomolar) agonist activity at GLP-1R, as evaluated via cAMP signaling. In addition, HPLC retention times and in silico calculations suggested that mono- and bicyclic compounds had more favorable n-octanol/water partition coefficients according to the virtual partition coefficient model (vLogP), while maintaining a smaller radius of gyration compared to corresponding uncyclized peptidomimetics. Our findings suggest that cyclic peptidomimetics provide a potential avenue for future design of potent, compact ligands targeting GLP-1R and possessing improved physicochemical properties.
[Display omitted]
•Chimeras combining 11 residue peptidomimetics and α-conotoxins are potent GLP-1R agonists.•Several chimeras had improved biophysical properties compared to the parent compounds.•These bicyclic peptidomimetics provide a new avenue in the development of GLP-1R agonists. |
---|---|
ISSN: | 0223-5234 1768-3254 |
DOI: | 10.1016/j.ejmech.2015.08.046 |