Loading…
Assessment, management, and minimization
Biodegradation studies and physicochemical characterizations remain important to the overall assessment of hazardous wastes. Wilber and Wang (1997) investigated the effects of three electron acceptors (oxygen, nitrate, and sulfate) and two supplemental carbon sources (acetate and glucose) on the bio...
Saved in:
Published in: | Water environment research 1998-06, Vol.70 (4), p.699-705 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4269-fa6fbee89ce8b71ab18af95494664f4f134ae741030cb12f7ab848eda523f7883 |
---|---|
cites | |
container_end_page | 705 |
container_issue | 4 |
container_start_page | 699 |
container_title | Water environment research |
container_volume | 70 |
creator | Hess, T.F. (University of Idaho, Moscow.) Buyuksonmez, F Watts, R.J Teel, A.L |
description | Biodegradation studies and physicochemical characterizations remain important to the overall assessment of hazardous wastes. Wilber and Wang (1997) investigated the effects of three electron acceptors (oxygen, nitrate, and sulfate) and two supplemental carbon sources (acetate and glucose) on the biodegradation of alachlor and propachlor. Both herbicides biodegraded in the presence of both carbon sources and with each of the three electron acceptors; however, their most rapid transformation occurred under sulfate-reducing conditions. Kao and Borden (1997) used laboratory microcosms to evaluate benzene, toluene, ethylbenzene, and xylene (BTEX) biodegradation under nitrifying conditions. In general, minimal benzene degradation was found under denitrifying conditions. Bradley et al. (1997) investigated the potential for intrinsic bioremediation of 2,4-dinitrotoluene (DNT) by indigenous microorganisms from a shallow aquifer below an explosives-contaminated site. They found that 28% of the DNT was mineralized within 28 days and another 28% was transformed to reduced aminonitrotoluene products. |
doi_str_mv | 10.2175/106143098X134433 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17228527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25045086</jstor_id><sourcerecordid>25045086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4269-fa6fbee89ce8b71ab18af95494664f4f134ae741030cb12f7ab848eda523f7883</originalsourceid><addsrcrecordid>eNqFkEtLAzEURgdRsFb3boTiQlw4mpt3lqXUBxQEteguZKZJSZlHTaZI_fVGRhS6cXUvfOdcLl-WnQK6xiDYDSAOlCAl34BQSsheNgDGaC4Ygf20pzhPOTnMjmJcIQQYIzrILscx2hhr23RXo9o0Zmn73TSLUe0bX_tP0_m2Oc4OnKmiPfmZw2x-O32Z3Oezx7uHyXiWlxRzlTvDXWGtVKWVhQBTgDROMaoo59RRl54zVlBABJUFYCdMIam0C8MwcUJKMswu-rvr0L5vbOx07WNpq8o0tt1EDQJjybBI4PkOuGo3oUm_aQwcccYITxDqoTK0MQbr9Dr42oStBqS_e9O7vSWF9cqHr-z2X16_Tp8QVyp5Z723il0bfj3MEGVI8r_cmVabZfBRz59BKYGEJEyRLx5Ef6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216065536</pqid></control><display><type>article</type><title>Assessment, management, and minimization</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hess, T.F. (University of Idaho, Moscow.) ; Buyuksonmez, F ; Watts, R.J ; Teel, A.L</creator><creatorcontrib>Hess, T.F. (University of Idaho, Moscow.) ; Buyuksonmez, F ; Watts, R.J ; Teel, A.L</creatorcontrib><description>Biodegradation studies and physicochemical characterizations remain important to the overall assessment of hazardous wastes. Wilber and Wang (1997) investigated the effects of three electron acceptors (oxygen, nitrate, and sulfate) and two supplemental carbon sources (acetate and glucose) on the biodegradation of alachlor and propachlor. Both herbicides biodegraded in the presence of both carbon sources and with each of the three electron acceptors; however, their most rapid transformation occurred under sulfate-reducing conditions. Kao and Borden (1997) used laboratory microcosms to evaluate benzene, toluene, ethylbenzene, and xylene (BTEX) biodegradation under nitrifying conditions. In general, minimal benzene degradation was found under denitrifying conditions. Bradley et al. (1997) investigated the potential for intrinsic bioremediation of 2,4-dinitrotoluene (DNT) by indigenous microorganisms from a shallow aquifer below an explosives-contaminated site. They found that 28% of the DNT was mineralized within 28 days and another 28% was transformed to reduced aminonitrotoluene products.</description><identifier>ISSN: 1061-4303</identifier><identifier>EISSN: 1554-7531</identifier><identifier>DOI: 10.2175/106143098X134433</identifier><language>eng</language><publisher>Alexandria: Water Environment Federation</publisher><subject>Chemical hazards ; Chromium ; CONTAMINANTES ; CONTROL DE LA CONTAMINACION ; DECHET INDUSTRIEL ; DESECHOS INDUSTRIALES ; Groundwater ; Hazardous Wastes ; INDUSTRIAL WASTES ; Leaching ; LITERATURE REVIEWS ; LUTTE ANTIPOLLUTION ; POLLUANT ; POLLUTANTS ; POLLUTED SOIL ; POLLUTION CONTROL ; POLLUTION DU SOL ; POLUCION DEL SUELO ; RIESGO ; RISK ; RISK ASSESSMENT ; RISQUE ; Sedimentary soils ; SOIL POLLUTION ; Soil water ; SOL POLLUE ; SUELO CONTAMINADO ; Toxicity ; Volatile organic compounds ; Waste management</subject><ispartof>Water environment research, 1998-06, Vol.70 (4), p.699-705</ispartof><rights>Copyright 1998 The Water Environment Federation (WEF)</rights><rights>1998 Water Environment Federation</rights><rights>Copyright Water Environment Federation Jun 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4269-fa6fbee89ce8b71ab18af95494664f4f134ae741030cb12f7ab848eda523f7883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25045086$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25045086$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,58213,58446</link.rule.ids></links><search><creatorcontrib>Hess, T.F. (University of Idaho, Moscow.)</creatorcontrib><creatorcontrib>Buyuksonmez, F</creatorcontrib><creatorcontrib>Watts, R.J</creatorcontrib><creatorcontrib>Teel, A.L</creatorcontrib><title>Assessment, management, and minimization</title><title>Water environment research</title><description>Biodegradation studies and physicochemical characterizations remain important to the overall assessment of hazardous wastes. Wilber and Wang (1997) investigated the effects of three electron acceptors (oxygen, nitrate, and sulfate) and two supplemental carbon sources (acetate and glucose) on the biodegradation of alachlor and propachlor. Both herbicides biodegraded in the presence of both carbon sources and with each of the three electron acceptors; however, their most rapid transformation occurred under sulfate-reducing conditions. Kao and Borden (1997) used laboratory microcosms to evaluate benzene, toluene, ethylbenzene, and xylene (BTEX) biodegradation under nitrifying conditions. In general, minimal benzene degradation was found under denitrifying conditions. Bradley et al. (1997) investigated the potential for intrinsic bioremediation of 2,4-dinitrotoluene (DNT) by indigenous microorganisms from a shallow aquifer below an explosives-contaminated site. They found that 28% of the DNT was mineralized within 28 days and another 28% was transformed to reduced aminonitrotoluene products.</description><subject>Chemical hazards</subject><subject>Chromium</subject><subject>CONTAMINANTES</subject><subject>CONTROL DE LA CONTAMINACION</subject><subject>DECHET INDUSTRIEL</subject><subject>DESECHOS INDUSTRIALES</subject><subject>Groundwater</subject><subject>Hazardous Wastes</subject><subject>INDUSTRIAL WASTES</subject><subject>Leaching</subject><subject>LITERATURE REVIEWS</subject><subject>LUTTE ANTIPOLLUTION</subject><subject>POLLUANT</subject><subject>POLLUTANTS</subject><subject>POLLUTED SOIL</subject><subject>POLLUTION CONTROL</subject><subject>POLLUTION DU SOL</subject><subject>POLUCION DEL SUELO</subject><subject>RIESGO</subject><subject>RISK</subject><subject>RISK ASSESSMENT</subject><subject>RISQUE</subject><subject>Sedimentary soils</subject><subject>SOIL POLLUTION</subject><subject>Soil water</subject><subject>SOL POLLUE</subject><subject>SUELO CONTAMINADO</subject><subject>Toxicity</subject><subject>Volatile organic compounds</subject><subject>Waste management</subject><issn>1061-4303</issn><issn>1554-7531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURgdRsFb3boTiQlw4mpt3lqXUBxQEteguZKZJSZlHTaZI_fVGRhS6cXUvfOdcLl-WnQK6xiDYDSAOlCAl34BQSsheNgDGaC4Ygf20pzhPOTnMjmJcIQQYIzrILscx2hhr23RXo9o0Zmn73TSLUe0bX_tP0_m2Oc4OnKmiPfmZw2x-O32Z3Oezx7uHyXiWlxRzlTvDXWGtVKWVhQBTgDROMaoo59RRl54zVlBABJUFYCdMIam0C8MwcUJKMswu-rvr0L5vbOx07WNpq8o0tt1EDQJjybBI4PkOuGo3oUm_aQwcccYITxDqoTK0MQbr9Dr42oStBqS_e9O7vSWF9cqHr-z2X16_Tp8QVyp5Z723il0bfj3MEGVI8r_cmVabZfBRz59BKYGEJEyRLx5Ef6A</recordid><startdate>199806</startdate><enddate>199806</enddate><creator>Hess, T.F. (University of Idaho, Moscow.)</creator><creator>Buyuksonmez, F</creator><creator>Watts, R.J</creator><creator>Teel, A.L</creator><general>Water Environment Federation</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>7UA</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7T2</scope><scope>7TV</scope><scope>7U2</scope></search><sort><creationdate>199806</creationdate><title>Assessment, management, and minimization</title><author>Hess, T.F. (University of Idaho, Moscow.) ; Buyuksonmez, F ; Watts, R.J ; Teel, A.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4269-fa6fbee89ce8b71ab18af95494664f4f134ae741030cb12f7ab848eda523f7883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Chemical hazards</topic><topic>Chromium</topic><topic>CONTAMINANTES</topic><topic>CONTROL DE LA CONTAMINACION</topic><topic>DECHET INDUSTRIEL</topic><topic>DESECHOS INDUSTRIALES</topic><topic>Groundwater</topic><topic>Hazardous Wastes</topic><topic>INDUSTRIAL WASTES</topic><topic>Leaching</topic><topic>LITERATURE REVIEWS</topic><topic>LUTTE ANTIPOLLUTION</topic><topic>POLLUANT</topic><topic>POLLUTANTS</topic><topic>POLLUTED SOIL</topic><topic>POLLUTION CONTROL</topic><topic>POLLUTION DU SOL</topic><topic>POLUCION DEL SUELO</topic><topic>RIESGO</topic><topic>RISK</topic><topic>RISK ASSESSMENT</topic><topic>RISQUE</topic><topic>Sedimentary soils</topic><topic>SOIL POLLUTION</topic><topic>Soil water</topic><topic>SOL POLLUE</topic><topic>SUELO CONTAMINADO</topic><topic>Toxicity</topic><topic>Volatile organic compounds</topic><topic>Waste management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hess, T.F. (University of Idaho, Moscow.)</creatorcontrib><creatorcontrib>Buyuksonmez, F</creatorcontrib><creatorcontrib>Watts, R.J</creatorcontrib><creatorcontrib>Teel, A.L</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Pollution Abstracts</collection><collection>Safety Science and Risk</collection><jtitle>Water environment research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hess, T.F. (University of Idaho, Moscow.)</au><au>Buyuksonmez, F</au><au>Watts, R.J</au><au>Teel, A.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment, management, and minimization</atitle><jtitle>Water environment research</jtitle><date>1998-06</date><risdate>1998</risdate><volume>70</volume><issue>4</issue><spage>699</spage><epage>705</epage><pages>699-705</pages><issn>1061-4303</issn><eissn>1554-7531</eissn><abstract>Biodegradation studies and physicochemical characterizations remain important to the overall assessment of hazardous wastes. Wilber and Wang (1997) investigated the effects of three electron acceptors (oxygen, nitrate, and sulfate) and two supplemental carbon sources (acetate and glucose) on the biodegradation of alachlor and propachlor. Both herbicides biodegraded in the presence of both carbon sources and with each of the three electron acceptors; however, their most rapid transformation occurred under sulfate-reducing conditions. Kao and Borden (1997) used laboratory microcosms to evaluate benzene, toluene, ethylbenzene, and xylene (BTEX) biodegradation under nitrifying conditions. In general, minimal benzene degradation was found under denitrifying conditions. Bradley et al. (1997) investigated the potential for intrinsic bioremediation of 2,4-dinitrotoluene (DNT) by indigenous microorganisms from a shallow aquifer below an explosives-contaminated site. They found that 28% of the DNT was mineralized within 28 days and another 28% was transformed to reduced aminonitrotoluene products.</abstract><cop>Alexandria</cop><pub>Water Environment Federation</pub><doi>10.2175/106143098X134433</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4303 |
ispartof | Water environment research, 1998-06, Vol.70 (4), p.699-705 |
issn | 1061-4303 1554-7531 |
language | eng |
recordid | cdi_proquest_miscellaneous_17228527 |
source | JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection |
subjects | Chemical hazards Chromium CONTAMINANTES CONTROL DE LA CONTAMINACION DECHET INDUSTRIEL DESECHOS INDUSTRIALES Groundwater Hazardous Wastes INDUSTRIAL WASTES Leaching LITERATURE REVIEWS LUTTE ANTIPOLLUTION POLLUANT POLLUTANTS POLLUTED SOIL POLLUTION CONTROL POLLUTION DU SOL POLUCION DEL SUELO RIESGO RISK RISK ASSESSMENT RISQUE Sedimentary soils SOIL POLLUTION Soil water SOL POLLUE SUELO CONTAMINADO Toxicity Volatile organic compounds Waste management |
title | Assessment, management, and minimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment,%20management,%20and%20minimization&rft.jtitle=Water%20environment%20research&rft.au=Hess,%20T.F.%20(University%20of%20Idaho,%20Moscow.)&rft.date=1998-06&rft.volume=70&rft.issue=4&rft.spage=699&rft.epage=705&rft.pages=699-705&rft.issn=1061-4303&rft.eissn=1554-7531&rft_id=info:doi/10.2175/106143098X134433&rft_dat=%3Cjstor_proqu%3E25045086%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4269-fa6fbee89ce8b71ab18af95494664f4f134ae741030cb12f7ab848eda523f7883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216065536&rft_id=info:pmid/&rft_jstor_id=25045086&rfr_iscdi=true |