Loading…

Computer-aided classification of melanocytic lesions using dermoscopic images

Background Computer-assisted diagnosis of dermoscopic images of skin lesions has the potential to improve melanoma early detection. Objective We sought to evaluate the performance of a novel classifier that uses decision forest classification of dermoscopic images to generate a lesion severity score...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Academy of Dermatology 2015-11, Vol.73 (5), p.769-776
Main Authors: Ferris, Laura K., MD, PhD, Harkes, Jan A., MS, Gilbert, Benjamin, MS, Winger, Daniel G., MS, Golubets, Kseniya, MD, MHS, Akilov, Oleg, MD, PhD, Satyanarayanan, Mahadev, PhD
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-19c1b35c31bb77735e38776dadf0925a32920d553ba4b808f9e6057d74969b6d3
cites cdi_FETCH-LOGICAL-c477t-19c1b35c31bb77735e38776dadf0925a32920d553ba4b808f9e6057d74969b6d3
container_end_page 776
container_issue 5
container_start_page 769
container_title Journal of the American Academy of Dermatology
container_volume 73
creator Ferris, Laura K., MD, PhD
Harkes, Jan A., MS
Gilbert, Benjamin, MS
Winger, Daniel G., MS
Golubets, Kseniya, MD, MHS
Akilov, Oleg, MD, PhD
Satyanarayanan, Mahadev, PhD
description Background Computer-assisted diagnosis of dermoscopic images of skin lesions has the potential to improve melanoma early detection. Objective We sought to evaluate the performance of a novel classifier that uses decision forest classification of dermoscopic images to generate a lesion severity score. Methods Severity scores were calculated for 173 dermoscopic images of skin lesions with known histologic diagnosis (39 melanomas, 14 nonmelanoma skin cancers, and 120 benign lesions). A threshold score was used to measure classifier sensitivity and specificity. A reader study was conducted to compare the sensitivity and specificity of the classifier with those of 30 dermatology clinicians. Results The classifier sensitivity for melanoma was 97.4%; specificity was 44.2% in a test set of images. In the reader study, the classifier's sensitivity to melanoma was higher ( P  
doi_str_mv 10.1016/j.jaad.2015.07.028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722928883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0190962215019738</els_id><sourcerecordid>1722928883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-19c1b35c31bb77735e38776dadf0925a32920d553ba4b808f9e6057d74969b6d3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EapfSL8AB5cglYWxv_EdCSGjV0kpFHICz5diTyiGJFztB2m-Poy0cOHAaa_ze08xvCHlNoaFAxbuhGaz1DQPaNiAbYOoZ2VHQshZSyedkB1RDrQVjl-RlzgMA6D2XF-SSCa6E4HRHPh_idFwXTLUNHn3lRptz6IOzS4hzFftqwtHO0Z2W4KoRc-nmas1hfqw8pilmF4_lJ0z2EfMr8qK3Y8brp3pFvt_efDvc1Q9fPt0fPj7Ubi_lUlPtaMdbx2nXSSl5i1xJKbz1PWjWWs40A9-2vLP7ToHqNQpopZd7LXQnPL8ib8-5xxR_rpgXM4XscCyTYlyzoZKVCKUUL1J2lroUc07Ym2Mqw6aToWA2jGYwG0azYTQgTcFYTG-e8tduQv_X8odbEbw_C7Bs-StgMtkFnB36kNAtxsfw__wP_9jdGOYCffyBJ8xDXNNc-BlqMjNgvm6H3O5I2_KSXPHfdz6YVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722928883</pqid></control><display><type>article</type><title>Computer-aided classification of melanocytic lesions using dermoscopic images</title><source>ScienceDirect Journals</source><creator>Ferris, Laura K., MD, PhD ; Harkes, Jan A., MS ; Gilbert, Benjamin, MS ; Winger, Daniel G., MS ; Golubets, Kseniya, MD, MHS ; Akilov, Oleg, MD, PhD ; Satyanarayanan, Mahadev, PhD</creator><creatorcontrib>Ferris, Laura K., MD, PhD ; Harkes, Jan A., MS ; Gilbert, Benjamin, MS ; Winger, Daniel G., MS ; Golubets, Kseniya, MD, MHS ; Akilov, Oleg, MD, PhD ; Satyanarayanan, Mahadev, PhD</creatorcontrib><description>Background Computer-assisted diagnosis of dermoscopic images of skin lesions has the potential to improve melanoma early detection. Objective We sought to evaluate the performance of a novel classifier that uses decision forest classification of dermoscopic images to generate a lesion severity score. Methods Severity scores were calculated for 173 dermoscopic images of skin lesions with known histologic diagnosis (39 melanomas, 14 nonmelanoma skin cancers, and 120 benign lesions). A threshold score was used to measure classifier sensitivity and specificity. A reader study was conducted to compare the sensitivity and specificity of the classifier with those of 30 dermatology clinicians. Results The classifier sensitivity for melanoma was 97.4%; specificity was 44.2% in a test set of images. In the reader study, the classifier's sensitivity to melanoma was higher ( P  &lt; .001) and specificity was lower ( P  &lt; .001) than that of clinicians. Limitations This is a retrospective study using existing images primarily chosen for biopsy by a dermatologist. The size of the test set is small. Conclusions Our classifier may aid clinicians in deciding if a skin lesion should be biopsied and can easily be incorporated into a portable tool (that uses no proprietary equipment) that could aid clinicians in noninvasively evaluating cutaneous lesions.</description><identifier>ISSN: 0190-9622</identifier><identifier>EISSN: 1097-6787</identifier><identifier>DOI: 10.1016/j.jaad.2015.07.028</identifier><identifier>PMID: 26386631</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>basal cell carcinoma ; computer-assisted diagnosis ; Decision Trees ; Dermatology ; dermoscopy ; Dermoscopy - methods ; Female ; Humans ; Image Interpretation, Computer-Assisted - methods ; information technology ; machine learning ; Male ; melanoma ; Melanoma - classification ; Melanoma - pathology ; skin cancer ; Skin Neoplasms - classification ; Skin Neoplasms - pathology</subject><ispartof>Journal of the American Academy of Dermatology, 2015-11, Vol.73 (5), p.769-776</ispartof><rights>2015</rights><rights>Copyright © 2015. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-19c1b35c31bb77735e38776dadf0925a32920d553ba4b808f9e6057d74969b6d3</citedby><cites>FETCH-LOGICAL-c477t-19c1b35c31bb77735e38776dadf0925a32920d553ba4b808f9e6057d74969b6d3</cites><orcidid>0000-0003-1339-5710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26386631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferris, Laura K., MD, PhD</creatorcontrib><creatorcontrib>Harkes, Jan A., MS</creatorcontrib><creatorcontrib>Gilbert, Benjamin, MS</creatorcontrib><creatorcontrib>Winger, Daniel G., MS</creatorcontrib><creatorcontrib>Golubets, Kseniya, MD, MHS</creatorcontrib><creatorcontrib>Akilov, Oleg, MD, PhD</creatorcontrib><creatorcontrib>Satyanarayanan, Mahadev, PhD</creatorcontrib><title>Computer-aided classification of melanocytic lesions using dermoscopic images</title><title>Journal of the American Academy of Dermatology</title><addtitle>J Am Acad Dermatol</addtitle><description>Background Computer-assisted diagnosis of dermoscopic images of skin lesions has the potential to improve melanoma early detection. Objective We sought to evaluate the performance of a novel classifier that uses decision forest classification of dermoscopic images to generate a lesion severity score. Methods Severity scores were calculated for 173 dermoscopic images of skin lesions with known histologic diagnosis (39 melanomas, 14 nonmelanoma skin cancers, and 120 benign lesions). A threshold score was used to measure classifier sensitivity and specificity. A reader study was conducted to compare the sensitivity and specificity of the classifier with those of 30 dermatology clinicians. Results The classifier sensitivity for melanoma was 97.4%; specificity was 44.2% in a test set of images. In the reader study, the classifier's sensitivity to melanoma was higher ( P  &lt; .001) and specificity was lower ( P  &lt; .001) than that of clinicians. Limitations This is a retrospective study using existing images primarily chosen for biopsy by a dermatologist. The size of the test set is small. Conclusions Our classifier may aid clinicians in deciding if a skin lesion should be biopsied and can easily be incorporated into a portable tool (that uses no proprietary equipment) that could aid clinicians in noninvasively evaluating cutaneous lesions.</description><subject>basal cell carcinoma</subject><subject>computer-assisted diagnosis</subject><subject>Decision Trees</subject><subject>Dermatology</subject><subject>dermoscopy</subject><subject>Dermoscopy - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>information technology</subject><subject>machine learning</subject><subject>Male</subject><subject>melanoma</subject><subject>Melanoma - classification</subject><subject>Melanoma - pathology</subject><subject>skin cancer</subject><subject>Skin Neoplasms - classification</subject><subject>Skin Neoplasms - pathology</subject><issn>0190-9622</issn><issn>1097-6787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EapfSL8AB5cglYWxv_EdCSGjV0kpFHICz5diTyiGJFztB2m-Poy0cOHAaa_ze08xvCHlNoaFAxbuhGaz1DQPaNiAbYOoZ2VHQshZSyedkB1RDrQVjl-RlzgMA6D2XF-SSCa6E4HRHPh_idFwXTLUNHn3lRptz6IOzS4hzFftqwtHO0Z2W4KoRc-nmas1hfqw8pilmF4_lJ0z2EfMr8qK3Y8brp3pFvt_efDvc1Q9fPt0fPj7Ubi_lUlPtaMdbx2nXSSl5i1xJKbz1PWjWWs40A9-2vLP7ToHqNQpopZd7LXQnPL8ib8-5xxR_rpgXM4XscCyTYlyzoZKVCKUUL1J2lroUc07Ym2Mqw6aToWA2jGYwG0azYTQgTcFYTG-e8tduQv_X8odbEbw_C7Bs-StgMtkFnB36kNAtxsfw__wP_9jdGOYCffyBJ8xDXNNc-BlqMjNgvm6H3O5I2_KSXPHfdz6YVA</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Ferris, Laura K., MD, PhD</creator><creator>Harkes, Jan A., MS</creator><creator>Gilbert, Benjamin, MS</creator><creator>Winger, Daniel G., MS</creator><creator>Golubets, Kseniya, MD, MHS</creator><creator>Akilov, Oleg, MD, PhD</creator><creator>Satyanarayanan, Mahadev, PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1339-5710</orcidid></search><sort><creationdate>20151101</creationdate><title>Computer-aided classification of melanocytic lesions using dermoscopic images</title><author>Ferris, Laura K., MD, PhD ; Harkes, Jan A., MS ; Gilbert, Benjamin, MS ; Winger, Daniel G., MS ; Golubets, Kseniya, MD, MHS ; Akilov, Oleg, MD, PhD ; Satyanarayanan, Mahadev, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-19c1b35c31bb77735e38776dadf0925a32920d553ba4b808f9e6057d74969b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>basal cell carcinoma</topic><topic>computer-assisted diagnosis</topic><topic>Decision Trees</topic><topic>Dermatology</topic><topic>dermoscopy</topic><topic>Dermoscopy - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>information technology</topic><topic>machine learning</topic><topic>Male</topic><topic>melanoma</topic><topic>Melanoma - classification</topic><topic>Melanoma - pathology</topic><topic>skin cancer</topic><topic>Skin Neoplasms - classification</topic><topic>Skin Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferris, Laura K., MD, PhD</creatorcontrib><creatorcontrib>Harkes, Jan A., MS</creatorcontrib><creatorcontrib>Gilbert, Benjamin, MS</creatorcontrib><creatorcontrib>Winger, Daniel G., MS</creatorcontrib><creatorcontrib>Golubets, Kseniya, MD, MHS</creatorcontrib><creatorcontrib>Akilov, Oleg, MD, PhD</creatorcontrib><creatorcontrib>Satyanarayanan, Mahadev, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Academy of Dermatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferris, Laura K., MD, PhD</au><au>Harkes, Jan A., MS</au><au>Gilbert, Benjamin, MS</au><au>Winger, Daniel G., MS</au><au>Golubets, Kseniya, MD, MHS</au><au>Akilov, Oleg, MD, PhD</au><au>Satyanarayanan, Mahadev, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-aided classification of melanocytic lesions using dermoscopic images</atitle><jtitle>Journal of the American Academy of Dermatology</jtitle><addtitle>J Am Acad Dermatol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>73</volume><issue>5</issue><spage>769</spage><epage>776</epage><pages>769-776</pages><issn>0190-9622</issn><eissn>1097-6787</eissn><abstract>Background Computer-assisted diagnosis of dermoscopic images of skin lesions has the potential to improve melanoma early detection. Objective We sought to evaluate the performance of a novel classifier that uses decision forest classification of dermoscopic images to generate a lesion severity score. Methods Severity scores were calculated for 173 dermoscopic images of skin lesions with known histologic diagnosis (39 melanomas, 14 nonmelanoma skin cancers, and 120 benign lesions). A threshold score was used to measure classifier sensitivity and specificity. A reader study was conducted to compare the sensitivity and specificity of the classifier with those of 30 dermatology clinicians. Results The classifier sensitivity for melanoma was 97.4%; specificity was 44.2% in a test set of images. In the reader study, the classifier's sensitivity to melanoma was higher ( P  &lt; .001) and specificity was lower ( P  &lt; .001) than that of clinicians. Limitations This is a retrospective study using existing images primarily chosen for biopsy by a dermatologist. The size of the test set is small. Conclusions Our classifier may aid clinicians in deciding if a skin lesion should be biopsied and can easily be incorporated into a portable tool (that uses no proprietary equipment) that could aid clinicians in noninvasively evaluating cutaneous lesions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26386631</pmid><doi>10.1016/j.jaad.2015.07.028</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1339-5710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0190-9622
ispartof Journal of the American Academy of Dermatology, 2015-11, Vol.73 (5), p.769-776
issn 0190-9622
1097-6787
language eng
recordid cdi_proquest_miscellaneous_1722928883
source ScienceDirect Journals
subjects basal cell carcinoma
computer-assisted diagnosis
Decision Trees
Dermatology
dermoscopy
Dermoscopy - methods
Female
Humans
Image Interpretation, Computer-Assisted - methods
information technology
machine learning
Male
melanoma
Melanoma - classification
Melanoma - pathology
skin cancer
Skin Neoplasms - classification
Skin Neoplasms - pathology
title Computer-aided classification of melanocytic lesions using dermoscopic images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-aided%20classification%20of%20melanocytic%20lesions%20using%20dermoscopic%20images&rft.jtitle=Journal%20of%20the%20American%20Academy%20of%20Dermatology&rft.au=Ferris,%20Laura%20K.,%20MD,%20PhD&rft.date=2015-11-01&rft.volume=73&rft.issue=5&rft.spage=769&rft.epage=776&rft.pages=769-776&rft.issn=0190-9622&rft.eissn=1097-6787&rft_id=info:doi/10.1016/j.jaad.2015.07.028&rft_dat=%3Cproquest_cross%3E1722928883%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-19c1b35c31bb77735e38776dadf0925a32920d553ba4b808f9e6057d74969b6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1722928883&rft_id=info:pmid/26386631&rfr_iscdi=true