Loading…

Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics

A unified framework of semi-volatile partitioning permits models to efficiently treat both semi-volatile primary emissions and secondary organic aerosol production (SOA), and then to treat the chemical evolution (aging) of the aggregate distribution of semi-volatile material. This framework also rev...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2006-04, Vol.40 (8), p.2635-2643
Main Authors: Donahue, N. M, Robinson, A. L, Stanier, C. O, Pandis, S. N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a573t-2845b9c11ddd0d1022ccbdf71cb19e18899610efff98a0449428703e1b904b883
cites cdi_FETCH-LOGICAL-a573t-2845b9c11ddd0d1022ccbdf71cb19e18899610efff98a0449428703e1b904b883
container_end_page 2643
container_issue 8
container_start_page 2635
container_title Environmental science & technology
container_volume 40
creator Donahue, N. M
Robinson, A. L
Stanier, C. O
Pandis, S. N
description A unified framework of semi-volatile partitioning permits models to efficiently treat both semi-volatile primary emissions and secondary organic aerosol production (SOA), and then to treat the chemical evolution (aging) of the aggregate distribution of semi-volatile material. This framework also reveals critical deficiencies in current emissions and SOA formation measurements. The key feature of this treatment is a uniform basis set of saturation vapor pressures spanning the range of ambient organic saturation concentrations, from effectively nonvolatile material at 0.01 μg m-3 to vapor-phase effluents at 100 mg m-3. Chemical evolution can be treated by a transformation matrix coupling the various basis vectors. Using this framework, we show that semi-volatile partitioning can be described in a self-consistent way, with realistic behavior with respect to temperature and varying organic aerosol loading. The time evolution strongly suggests that neglected oxidation of numerous “intermediate volatility” vapors (IVOCs, with saturation concentrations above ∼1 mg m-3) may contribute significantly to ambient SOA formation.
doi_str_mv 10.1021/es052297c
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17230355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17230355</sourcerecordid><originalsourceid>FETCH-LOGICAL-a573t-2845b9c11ddd0d1022ccbdf71cb19e18899610efff98a0449428703e1b904b883</originalsourceid><addsrcrecordid>eNqF0VFLHDEQB_BQWupp-9AvUJaCQsG1M8lmkzzKaWtRUDkLxZeQzWavsXu7Z7Ir-u2b4w6vtA8-hWR-DPnPEPIB4QiB4hcXgVOqhH1FJsgp5FxyfE0mAMhyxcqfO2Q3xjsAoAzkW7KDZSlZCWxCzqf9uGxdnV2ZMPjB953v5ofZiW_H1eUwM12dTX-5hbemzY7nqZr1TTZLDw99awbfuuwyzE3nbXxH3jSmje795twjP76e3kzP8ovLb9-nxxe54YINOZUFr5RFrOsa6hSAWlvVjUBboXIopVIlgmuaRkkDRaEKKgUwh5WCopKS7ZGDdd9l6O9HFwe98NG6tjWd68eoUaSYjPOXYSFKWUqV4Kd_4F0_hi6F0KkV0qSKhD6vkQ19jME1ehn8woQnjaBXe9DPe0j246bhWC1cvZWbwSewvwEmpsk2wXTWx60TgkqGK5evnY-De3yum_Bbl4IJrm-uZvr69mx2Xlzf6r_6Ghu3If7_4B_Jnaik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230126864</pqid></control><display><type>article</type><title>Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Donahue, N. M ; Robinson, A. L ; Stanier, C. O ; Pandis, S. N</creator><creatorcontrib>Donahue, N. M ; Robinson, A. L ; Stanier, C. O ; Pandis, S. N</creatorcontrib><description>A unified framework of semi-volatile partitioning permits models to efficiently treat both semi-volatile primary emissions and secondary organic aerosol production (SOA), and then to treat the chemical evolution (aging) of the aggregate distribution of semi-volatile material. This framework also reveals critical deficiencies in current emissions and SOA formation measurements. The key feature of this treatment is a uniform basis set of saturation vapor pressures spanning the range of ambient organic saturation concentrations, from effectively nonvolatile material at 0.01 μg m-3 to vapor-phase effluents at 100 mg m-3. Chemical evolution can be treated by a transformation matrix coupling the various basis vectors. Using this framework, we show that semi-volatile partitioning can be described in a self-consistent way, with realistic behavior with respect to temperature and varying organic aerosol loading. The time evolution strongly suggests that neglected oxidation of numerous “intermediate volatility” vapors (IVOCs, with saturation concentrations above ∼1 mg m-3) may contribute significantly to ambient SOA formation.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es052297c</identifier><identifier>PMID: 16683603</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Aerosols ; Air Pollutants ; Applied sciences ; Atmospheric pollution ; Emissions ; Exact sciences and technology ; Models, Chemical ; Organic Chemicals - chemistry ; Oxidation ; Oxidation-Reduction ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; Temperature ; VOCs ; Volatile organic compounds ; Volatility ; Volatilization</subject><ispartof>Environmental science &amp; technology, 2006-04, Vol.40 (8), p.2635-2643</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 15, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a573t-2845b9c11ddd0d1022ccbdf71cb19e18899610efff98a0449428703e1b904b883</citedby><cites>FETCH-LOGICAL-a573t-2845b9c11ddd0d1022ccbdf71cb19e18899610efff98a0449428703e1b904b883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17728313$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16683603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Donahue, N. M</creatorcontrib><creatorcontrib>Robinson, A. L</creatorcontrib><creatorcontrib>Stanier, C. O</creatorcontrib><creatorcontrib>Pandis, S. N</creatorcontrib><title>Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A unified framework of semi-volatile partitioning permits models to efficiently treat both semi-volatile primary emissions and secondary organic aerosol production (SOA), and then to treat the chemical evolution (aging) of the aggregate distribution of semi-volatile material. This framework also reveals critical deficiencies in current emissions and SOA formation measurements. The key feature of this treatment is a uniform basis set of saturation vapor pressures spanning the range of ambient organic saturation concentrations, from effectively nonvolatile material at 0.01 μg m-3 to vapor-phase effluents at 100 mg m-3. Chemical evolution can be treated by a transformation matrix coupling the various basis vectors. Using this framework, we show that semi-volatile partitioning can be described in a self-consistent way, with realistic behavior with respect to temperature and varying organic aerosol loading. The time evolution strongly suggests that neglected oxidation of numerous “intermediate volatility” vapors (IVOCs, with saturation concentrations above ∼1 mg m-3) may contribute significantly to ambient SOA formation.</description><subject>Aerosols</subject><subject>Air Pollutants</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Emissions</subject><subject>Exact sciences and technology</subject><subject>Models, Chemical</subject><subject>Organic Chemicals - chemistry</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><subject>Temperature</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Volatility</subject><subject>Volatilization</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0VFLHDEQB_BQWupp-9AvUJaCQsG1M8lmkzzKaWtRUDkLxZeQzWavsXu7Z7Ir-u2b4w6vtA8-hWR-DPnPEPIB4QiB4hcXgVOqhH1FJsgp5FxyfE0mAMhyxcqfO2Q3xjsAoAzkW7KDZSlZCWxCzqf9uGxdnV2ZMPjB953v5ofZiW_H1eUwM12dTX-5hbemzY7nqZr1TTZLDw99awbfuuwyzE3nbXxH3jSmje795twjP76e3kzP8ovLb9-nxxe54YINOZUFr5RFrOsa6hSAWlvVjUBboXIopVIlgmuaRkkDRaEKKgUwh5WCopKS7ZGDdd9l6O9HFwe98NG6tjWd68eoUaSYjPOXYSFKWUqV4Kd_4F0_hi6F0KkV0qSKhD6vkQ19jME1ehn8woQnjaBXe9DPe0j246bhWC1cvZWbwSewvwEmpsk2wXTWx60TgkqGK5evnY-De3yum_Bbl4IJrm-uZvr69mx2Xlzf6r_6Ghu3If7_4B_Jnaik</recordid><startdate>20060415</startdate><enddate>20060415</enddate><creator>Donahue, N. M</creator><creator>Robinson, A. L</creator><creator>Stanier, C. O</creator><creator>Pandis, S. N</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TG</scope><scope>7TV</scope><scope>KL.</scope></search><sort><creationdate>20060415</creationdate><title>Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics</title><author>Donahue, N. M ; Robinson, A. L ; Stanier, C. O ; Pandis, S. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a573t-2845b9c11ddd0d1022ccbdf71cb19e18899610efff98a0449428703e1b904b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aerosols</topic><topic>Air Pollutants</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Emissions</topic><topic>Exact sciences and technology</topic><topic>Models, Chemical</topic><topic>Organic Chemicals - chemistry</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><topic>Temperature</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Volatility</topic><topic>Volatilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donahue, N. M</creatorcontrib><creatorcontrib>Robinson, A. L</creatorcontrib><creatorcontrib>Stanier, C. O</creatorcontrib><creatorcontrib>Pandis, S. N</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donahue, N. M</au><au>Robinson, A. L</au><au>Stanier, C. O</au><au>Pandis, S. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2006-04-15</date><risdate>2006</risdate><volume>40</volume><issue>8</issue><spage>2635</spage><epage>2643</epage><pages>2635-2643</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>A unified framework of semi-volatile partitioning permits models to efficiently treat both semi-volatile primary emissions and secondary organic aerosol production (SOA), and then to treat the chemical evolution (aging) of the aggregate distribution of semi-volatile material. This framework also reveals critical deficiencies in current emissions and SOA formation measurements. The key feature of this treatment is a uniform basis set of saturation vapor pressures spanning the range of ambient organic saturation concentrations, from effectively nonvolatile material at 0.01 μg m-3 to vapor-phase effluents at 100 mg m-3. Chemical evolution can be treated by a transformation matrix coupling the various basis vectors. Using this framework, we show that semi-volatile partitioning can be described in a self-consistent way, with realistic behavior with respect to temperature and varying organic aerosol loading. The time evolution strongly suggests that neglected oxidation of numerous “intermediate volatility” vapors (IVOCs, with saturation concentrations above ∼1 mg m-3) may contribute significantly to ambient SOA formation.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16683603</pmid><doi>10.1021/es052297c</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2006-04, Vol.40 (8), p.2635-2643
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_17230355
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Aerosols
Air Pollutants
Applied sciences
Atmospheric pollution
Emissions
Exact sciences and technology
Models, Chemical
Organic Chemicals - chemistry
Oxidation
Oxidation-Reduction
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
Temperature
VOCs
Volatile organic compounds
Volatility
Volatilization
title Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Partitioning,%20Dilution,%20and%20Chemical%20Aging%20of%20Semivolatile%20Organics&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Donahue,%20N.%20M&rft.date=2006-04-15&rft.volume=40&rft.issue=8&rft.spage=2635&rft.epage=2643&rft.pages=2635-2643&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es052297c&rft_dat=%3Cproquest_cross%3E17230355%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a573t-2845b9c11ddd0d1022ccbdf71cb19e18899610efff98a0449428703e1b904b883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230126864&rft_id=info:pmid/16683603&rfr_iscdi=true