Loading…

Monoamine oxidase-A is an important source of oxidative stress and promotes cardiac dysfunction, apoptosis, and fibrosis in diabetic cardiomyopathy

Oxidative stress is closely associated with the pathophysiology of diabetic cardiomyopathy (DCM). The mitochondrial flavoenzyme monoamine oxidase A (MAO-A) is an important source of oxidative stress in the myocardium. We sought to determine whether MAO-A plays a major role in modulating DCM. Diabete...

Full description

Saved in:
Bibliographic Details
Published in:Free radical biology & medicine 2015-10, Vol.87, p.263-273
Main Authors: Umbarkar, Prachi, Singh, Sarojini, Arkat, Silpa, Bodhankar, S.L., Lohidasan, Sathiyanarayanan, Sitasawad, Sandhya L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxidative stress is closely associated with the pathophysiology of diabetic cardiomyopathy (DCM). The mitochondrial flavoenzyme monoamine oxidase A (MAO-A) is an important source of oxidative stress in the myocardium. We sought to determine whether MAO-A plays a major role in modulating DCM. Diabetes was induced in Wistar rats by single intraperitoneal injection of streptozotocin (STZ). To investigate the role of MAO-A in the development of pathophysiological features of DCM, hyperglycemic and age-matched control rats were treated with or without the MAO-A-specific inhibitor clorgyline (CLG) at 1mg/kg/day for 8 weeks. Diabetes upregulated MAO-A activity; elevated markers of oxidative stress such as cardiac lipid peroxidation, superoxide dismutase activity, and UCP3 protein expression; enhanced apoptotic cell death; and increased fibrosis. All these parameters were significantly attenuated by CLG treatment. In addition, treatment with CLG substantially prevented diabetes-induced cardiac contractile dysfunction as evidenced by decreased QRS, QT, and corrected QT intervals, measured by ECG, and LV systolic and LV end-diastolic pressure measured by microtip pressure transducer. These beneficial effects of CLG were seen despite the persistent hyperglycemic and hyperlipidemic environments in STZ-induced experimental diabetes. In summary, this study provides strong evidence that MAO-A is an important source of oxidative stress in the heart and that MAO-A-derived reactive oxygen species contribute to DCM. [Display omitted]
ISSN:0891-5849
1873-4596
DOI:10.1016/j.freeradbiomed.2015.06.025