Loading…

Urban meteorological modelling for nuclear emergency preparedness

The main objectives of the current EU project “Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure” (FUMAPEX) are the improvement of meteorological forecasts for urban areas, the connection of numerical weather prediction (NWP) models to urban air pollution an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental radioactivity 2006-01, Vol.85 (2), p.154-170
Main Authors: Baklanov, Alexander, Sørensen, Jens Havskov, Hoe, Steen Cordt, Amstrup, Bjarne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main objectives of the current EU project “Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure” (FUMAPEX) are the improvement of meteorological forecasts for urban areas, the connection of numerical weather prediction (NWP) models to urban air pollution and population dose models, the building of improved urban air quality information and forecasting systems, and their application in cities in various European climates. In addition to the forecast of the worst air-pollution episodes in large cities, the potential use of improved weather forecasts for nuclear emergency management in urban areas, in case of hazardous releases from nuclear accidents or terror acts, is considered. Such use of NWP data is tested for the Copenhagen metropolitan area and the Øresund region. The Danish Meteorological Institute (DMI) is running an experimental version of the HIRLAM NWP model over Zealand including the Copenhagen metropolitan area with a horizontal resolution of 1.4 km, thus approaching the city-scale. This involves 1-km resolution physiographic data with implications for the urban surface parameters, e.g. surface fluxes, roughness length and albedo. For the city of Copenhagen, the enhanced high-resolution NWP forecasting will be provided to demonstrate the improved dispersion forecasting capabilities of the Danish nuclear emergency preparedness decision–support system, the Accident Reporting and Guidance Operational System (ARGOS), used by the Danish Emergency Management Agency (DEMA). Recently, ARGOS has been extended with a capability of real-time calculation of regional-scale atmospheric dispersion of radioactive material from accidental releases. This is effectuated through on-line interfacing with the Danish Emergency Response Model of the Atmosphere (DERMA), which is run at DMI. For local-scale modelling of atmospheric dispersion, ARGOS utilises the Local-Scale Model Chain (LSMC), which makes use of high-resolution DMI-HIRLAM NWP model data provided to DEMA by DMI four times a day under operational surveillance and covering Denmark and surroundings. The integration of DERMA in ARGOS is effectuated through automated on-line digital communication and exchange of data. The calculations are carried out in parallel for each NWP model to which DMI has access, thereby providing a mini-ensemble of dispersion forecasts for the emergency management.
ISSN:0265-931X
1879-1700
DOI:10.1016/j.jenvrad.2005.01.018