Loading…
E1A + cHa-ras Transformed Rat Embryo Fibroblast Cells Are Characterized by High and Constitutive DNA Binding Activities of AP-1 Dimers With Significantly Altered Composition
Transcription factors of the AP-1/ATF family, including c-Fos, c-Jun, and ATF-2, play an important role in the regulation of cell proliferation and differentiation, and changes in their levels and/or activities may contribute to oncogenesis. We analyzed the alterations of AP-1/ATF transcription fact...
Saved in:
Published in: | Gene expression 1999-01, Vol.8 (1), p.19-32 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transcription factors of the AP-1/ATF family, including c-Fos, c-Jun, and ATF-2, play an important role in the regulation of cell proliferation and differentiation, and changes in their levels and/or activities may contribute to oncogenesis. We analyzed the alterations of AP-1/ATF transcription
factors upon immortalization and transformation in a panel of cell lines derived from rat embryo fibroblast (REF) cells. The tumorigenic E1A + cHa-ras cells are characterized by high and constitutive DNA binding activities of AP-1, in contrast to nontransformed cells and the E1A cells.
The expression of c-fos and c-jun genes was affected differently by the oncogenic transformation. By using antibodies to c-Jun and c-Fos proteins in electrophoretic mobility shift assays (EMSA), we showed that E1A + ras-ras transformants did not contain c-Fos under any
condition of cell cultivation and growth factor stimulation, whereas c-Jun was constitutively upregulated. In the absence of c-fos gene expression, c-Fos protein appears to be replaced by proteins of Fos family (Fra-1) and ATF family (ATF-2 and ATFa). To determine the possible mechanisms
of c-fos downregulation in E1A + cHa-ras transformants we have obtained populations of geneticin-resistant clones containing integrated reporter construct -711fos-CAT and its mutants in serum-responsive element (SRE) and cAMP-responsive element (CRE). Data obtained show
that the mutations within the SRE lead to a manifold activation of fos-CAT expression. This allows to suggest that c-fos downregulation in E1A + cHa-ras transformants is provided by a negative control mediated through the SRE regulatory region. The profound differences
in regulation and composition of transcription factors of the AP-1 family probably play a pivotal role in the transformation of REF cells by E1A and cHa-ras oncogenes. |
---|---|
ISSN: | 1052-2166 1555-3884 |