Loading…

Functional Analysis of the Two Zinc Fingers of SRE, a GATA-Type Factor That Negatively Regulates Siderophore Synthesis in Neurospora crassa

Multiple GATA factors, zinc finger DNA binding proteins that recognize consensus GATA elements, exist in Neurospora crassa. One of them, SRE, is involved in controlling the iron metabolic pathway of N. crassa. In N. crassa, iron transport is mediated by a number of small cyclic peptides, known as si...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1999-04, Vol.38 (14), p.4335-4341
Main Authors: Zhou, Liwei, Marzluf, George A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiple GATA factors, zinc finger DNA binding proteins that recognize consensus GATA elements, exist in Neurospora crassa. One of them, SRE, is involved in controlling the iron metabolic pathway of N. crassa. In N. crassa, iron transport is mediated by a number of small cyclic peptides, known as siderophores. The siderophore synthesis pathway is negatively regulated by SRE; a loss-of-function sre mutant strain showed partial constitutive synthesis of siderophore. In the research presented here, the negative function of SRE was further confirmed by a heterokaryon test and by gene complementation. SRE was expressed as a GST fusion protein. In vitro EMSA revealed that SRE binds specifically to DNA molecules containing GATA sequence elements. Autoregulation of sre gene expression appears possible because the sre gene promoter itself contains GATA sequences. Mutations were introduced into sre that lead to amino acid substitutions in each of the zinc fingers that will disrupt their function. In vitro EMSA revealed that both N-terminal and C-terminal zinc fingers of SRE are involved in DNA binding. This feature is different from that found with the vertebrate two zinc finger GATA factors. In vivo tests, accomplished by transforming the mutant sre genes into sre rip mutant, showed that SRE with mutations in either or both zinc fingers still maintained its function under low-iron conditions. In contrast, these mutant SRE proteins fail to function under high-iron conditions. Our results predict the presence of other positive or negative regulators of the siderophore synthetic pathway.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi982543f