Loading…

Recoverin Binds Exclusively to an Amphipathic Peptide at the N Terminus of Rhodopsin Kinase, Inhibiting Rhodopsin Phosphorylation without Affecting Catalytic Activity of the Kinase

Recoverin is a calcium-dependent inhibitor of rhodopsin kinase. It prevents premature phosphorylation of rhodopsin until the opening of cGMP-gated ion channels causes a decrease in intracellular calcium levels, signaling completion of the light response. This calcium depletion causes release of reco...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2006-07, Vol.281 (28), p.19426-19432
Main Authors: Higgins, Matthew K., Oprian, Daniel D., Schertler, Gebhard F.X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recoverin is a calcium-dependent inhibitor of rhodopsin kinase. It prevents premature phosphorylation of rhodopsin until the opening of cGMP-gated ion channels causes a decrease in intracellular calcium levels, signaling completion of the light response. This calcium depletion causes release of recoverin from rhodopsin kinase, freeing the kinase to phosphorylate rhodopsin and to terminate the light response. Previous studies have shown that recoverin is able to bind to a region at the N terminus of rhodopsin kinase. In this study we map this interaction interface, showing that residues 1-15 of the kinase form the interaction site for recoverin binding. Mutation of hydrophobic residues in this region have the greatest effect on the interaction. The periodic nature of these residues suggests that they lie along one face of an amphipathic helix. We show that this region is essential for recoverin binding, as a catalytically active kinase lacking these residues is unable to bind recoverin. In addition, we show that neither the N-terminal deletion nor the presence of recoverin inhibits the overall catalytic activity of the kinase, as measured by light-independent autophosphorylation. Finally, we observe that a kinase mutant lacking the N-terminal recoverin binding site is unable to phosphorylate light-activated rhodopsin. Taken together, these data support a model in which recoverin prevents rhodopsin phosphorylation by sterically blocking a region of kinase essential for its interaction with rhodopsin, thereby preventing recognition of rhodopsin as a kinase substrate.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M602203200