Loading…

Sequences surrounding the transcription initiation site of the Arabidopsis enoyl-acyl carrier protein reductase gene control seed expression in transgenic tobacco

The NADH-specific enoyl-acyl carrier protein (ACP) reductase, which catalyses the last reducing step during the fatty acid biosynthesis cycle, is encoded in Arabidopsis thaliana encoded by a single housekeeping gene (ENR-A) which is differentially expressed during plant development. To identify elem...

Full description

Saved in:
Bibliographic Details
Published in:Plant molecular biology 1999-04, Vol.39 (6), p.1197-1207
Main Authors: de Boer, G J, Testerink, C, Pielage, G, Nijkamp, H J, Stuitje, A R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The NADH-specific enoyl-acyl carrier protein (ACP) reductase, which catalyses the last reducing step during the fatty acid biosynthesis cycle, is encoded in Arabidopsis thaliana encoded by a single housekeeping gene (ENR-A) which is differentially expressed during plant development. To identify elements involved in its tissue-specific transcriptional control, a fragment comprising the 1470 bp region directly upstream of the ATG start codon of the ENR-A gene was fused to the uidA (GUS) reporter gene and analysed in transgenic Nicotiana tabacum plants. GUS activity found during development of the transgenic plants was similar to endogenous ENR protein levels found in both tobacco and Arabidopsis plants, except for developing flowers. In floral tissue the promoter fragment showed very little activity in contrast to the relatively high level of endogenous ENR expression. Successive deletions from the 5' and 3' regions of the promoter fragment revealed the presence of at least three elements which control GUS expression in different stages of development in the transgenic tobacco plants. First, expression in young developing leaves required both the presence of sequences between -329 to -201 relative to the transcription start and part of the untranslated leader comprising the first intron. Second, root-specific GUS expression was still observed after deletion of the 5'-upstream sequences up to 19 bp of the transcription initiation site. Further, the additional removal of the intron from the untranslated leader increased root-specific expression by ca. 4- to 5-fold. Third, high expression in seeds was still observed with the minimal upstream promoter segment of 19 bp. This seed expression level was found to be independent of the presence or absence of the intron in the untranslated leader. Finally, 3' deletion of the leader sequence up to 17 bp of the transcription start greatly impaired GUS activity during all stages of plant development, suggesting that the deleted sequence of the leader either functions as an enhancer for transcription initiation or stabilizes the mRNA.
ISSN:0167-4412
1573-5028
DOI:10.1023/A:1006129924683