Loading…

Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing

Summary This study was based on the hypothesis that biofilms of the opportunistic pathogen Pseudomonas aeruginosa are successfully adapted to situations of protozoan grazing. We tested P. aeruginosa wild type and strains that were genetically altered, in structural and regulatory features of biofilm...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology 2004-03, Vol.6 (3), p.218-226
Main Authors: Matz, Carsten, Bergfeld, Tanja, Rice, Scott A., Kjelleberg, Staffan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4996-24f9052bde2da3aa8559c49096dd9d71984831beae9be0093eb5ecb3266fb5ea3
cites cdi_FETCH-LOGICAL-c4996-24f9052bde2da3aa8559c49096dd9d71984831beae9be0093eb5ecb3266fb5ea3
container_end_page 226
container_issue 3
container_start_page 218
container_title Environmental microbiology
container_volume 6
creator Matz, Carsten
Bergfeld, Tanja
Rice, Scott A.
Kjelleberg, Staffan
description Summary This study was based on the hypothesis that biofilms of the opportunistic pathogen Pseudomonas aeruginosa are successfully adapted to situations of protozoan grazing. We tested P. aeruginosa wild type and strains that were genetically altered, in structural and regulatory features of biofilm development, in response to the common surface‐feeding flagellate Rhynchomonas nasuta. Early biofilms of the wild type showed the formation of grazing resistant microcolonies in the presence of the flagellate, whereas biofilms without the predator were undifferentiated. Grazing on biofilms of quorum sensing mutants (lasR and rhlR/lasR) also resulted in the formation of microcolonies, however, in lower numbers and size compared to the wild type. Considerably fewer microcolonies than the wild type were formed by mutant cells lacking type IV pili, whereas no microcolonies were formed by flagella‐deficient cells. The alginate‐overproducing strain PDO300 developed larger microcolonies in response to grazing. These observations suggest a role of quorum sensing in early biofilms and involvement of flagella, type IV pili, and alginate in microcolony formation in the presence of grazing. More mature biofilms of the wild type exhibited acute toxicity to the flagellate R. nasuta. Rapid growth of the flagellate on rhlR/lasR mutant biofilms indicated a key role of quorum sensing in the upregulation of lethal factors and in grazing protection of late biofilms. Both the formation of microcolonies and the production of toxins are effective mechanisms that may allow P. aeruginosa biofilms to resist protozoan grazing and to persist in the environment.
doi_str_mv 10.1111/j.1462-2920.2004.00556.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17270198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17270198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4996-24f9052bde2da3aa8559c49096dd9d71984831beae9be0093eb5ecb3266fb5ea3</originalsourceid><addsrcrecordid>eNqNUU1v1DAUtBCIlsJfQD5xIsF2Pi1xQau2tOoCQqBKXCwnflm8JPbWL2mzvfO_8bKr5YovHunNzHuaIYRylvL43q1TnpciEVKwVDCWp4wVRZnOT8jpcfD0iLk4IS8Q14zxKqvYc3LC87rigpWn5PfStsG3vvfOAr6ld5MP00ARHFq3otoZ2m5HP_rZtnbcUgMjhME6oONPoDiFe3uve-o7-gVhMn7wTiPVEKaVdR41bazvbD8ghXnjEQwdPd2EaPjotaOroB_jnpfkWad7hFeH_4x8vzj_tviY3Hy-vFp8uEnaXMoyEXknWSEaA8LoTOu6KGScMFkaI03FZZ3XGW9Ag2yAMZlBU0DbZKIsu4h0dkbe7H3jBXcT4KgGiy30vXbgJ1S8EhWLNpFY74kxHMQAndoEO-iwVZypXQVqrXbpql3SaleB-luBmqP09WHH1Axg_gkPmUfC-z3hwfaw_W9jdb68iiDKk73c4gjzUa7DL1XGegt1--lSLS_k7dfr64X6kf0B7Xaohg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17270198</pqid></control><display><type>article</type><title>Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing</title><source>Wiley</source><creator>Matz, Carsten ; Bergfeld, Tanja ; Rice, Scott A. ; Kjelleberg, Staffan</creator><creatorcontrib>Matz, Carsten ; Bergfeld, Tanja ; Rice, Scott A. ; Kjelleberg, Staffan</creatorcontrib><description>Summary This study was based on the hypothesis that biofilms of the opportunistic pathogen Pseudomonas aeruginosa are successfully adapted to situations of protozoan grazing. We tested P. aeruginosa wild type and strains that were genetically altered, in structural and regulatory features of biofilm development, in response to the common surface‐feeding flagellate Rhynchomonas nasuta. Early biofilms of the wild type showed the formation of grazing resistant microcolonies in the presence of the flagellate, whereas biofilms without the predator were undifferentiated. Grazing on biofilms of quorum sensing mutants (lasR and rhlR/lasR) also resulted in the formation of microcolonies, however, in lower numbers and size compared to the wild type. Considerably fewer microcolonies than the wild type were formed by mutant cells lacking type IV pili, whereas no microcolonies were formed by flagella‐deficient cells. The alginate‐overproducing strain PDO300 developed larger microcolonies in response to grazing. These observations suggest a role of quorum sensing in early biofilms and involvement of flagella, type IV pili, and alginate in microcolony formation in the presence of grazing. More mature biofilms of the wild type exhibited acute toxicity to the flagellate R. nasuta. Rapid growth of the flagellate on rhlR/lasR mutant biofilms indicated a key role of quorum sensing in the upregulation of lethal factors and in grazing protection of late biofilms. Both the formation of microcolonies and the production of toxins are effective mechanisms that may allow P. aeruginosa biofilms to resist protozoan grazing and to persist in the environment.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/j.1462-2920.2004.00556.x</identifier><identifier>PMID: 14871206</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Adaptation, Biological ; Alginates ; Animals ; Bacterial Proteins - genetics ; Biofilms - growth &amp; development ; DNA-Binding Proteins - genetics ; Fimbriae, Bacterial - genetics ; Flagella - genetics ; Glucuronic Acid - biosynthesis ; Glucuronic Acid - genetics ; Hexuronic Acids ; Kinetoplastida - physiology ; Microscopy, Fluorescence ; Mutation ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - cytology ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - growth &amp; development ; Pseudomonas aeruginosa - physiology ; Trans-Activators - genetics</subject><ispartof>Environmental microbiology, 2004-03, Vol.6 (3), p.218-226</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4996-24f9052bde2da3aa8559c49096dd9d71984831beae9be0093eb5ecb3266fb5ea3</citedby><cites>FETCH-LOGICAL-c4996-24f9052bde2da3aa8559c49096dd9d71984831beae9be0093eb5ecb3266fb5ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14871206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matz, Carsten</creatorcontrib><creatorcontrib>Bergfeld, Tanja</creatorcontrib><creatorcontrib>Rice, Scott A.</creatorcontrib><creatorcontrib>Kjelleberg, Staffan</creatorcontrib><title>Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary This study was based on the hypothesis that biofilms of the opportunistic pathogen Pseudomonas aeruginosa are successfully adapted to situations of protozoan grazing. We tested P. aeruginosa wild type and strains that were genetically altered, in structural and regulatory features of biofilm development, in response to the common surface‐feeding flagellate Rhynchomonas nasuta. Early biofilms of the wild type showed the formation of grazing resistant microcolonies in the presence of the flagellate, whereas biofilms without the predator were undifferentiated. Grazing on biofilms of quorum sensing mutants (lasR and rhlR/lasR) also resulted in the formation of microcolonies, however, in lower numbers and size compared to the wild type. Considerably fewer microcolonies than the wild type were formed by mutant cells lacking type IV pili, whereas no microcolonies were formed by flagella‐deficient cells. The alginate‐overproducing strain PDO300 developed larger microcolonies in response to grazing. These observations suggest a role of quorum sensing in early biofilms and involvement of flagella, type IV pili, and alginate in microcolony formation in the presence of grazing. More mature biofilms of the wild type exhibited acute toxicity to the flagellate R. nasuta. Rapid growth of the flagellate on rhlR/lasR mutant biofilms indicated a key role of quorum sensing in the upregulation of lethal factors and in grazing protection of late biofilms. Both the formation of microcolonies and the production of toxins are effective mechanisms that may allow P. aeruginosa biofilms to resist protozoan grazing and to persist in the environment.</description><subject>Adaptation, Biological</subject><subject>Alginates</subject><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Biofilms - growth &amp; development</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Fimbriae, Bacterial - genetics</subject><subject>Flagella - genetics</subject><subject>Glucuronic Acid - biosynthesis</subject><subject>Glucuronic Acid - genetics</subject><subject>Hexuronic Acids</subject><subject>Kinetoplastida - physiology</subject><subject>Microscopy, Fluorescence</subject><subject>Mutation</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - cytology</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - growth &amp; development</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Trans-Activators - genetics</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNUU1v1DAUtBCIlsJfQD5xIsF2Pi1xQau2tOoCQqBKXCwnflm8JPbWL2mzvfO_8bKr5YovHunNzHuaIYRylvL43q1TnpciEVKwVDCWp4wVRZnOT8jpcfD0iLk4IS8Q14zxKqvYc3LC87rigpWn5PfStsG3vvfOAr6ld5MP00ARHFq3otoZ2m5HP_rZtnbcUgMjhME6oONPoDiFe3uve-o7-gVhMn7wTiPVEKaVdR41bazvbD8ghXnjEQwdPd2EaPjotaOroB_jnpfkWad7hFeH_4x8vzj_tviY3Hy-vFp8uEnaXMoyEXknWSEaA8LoTOu6KGScMFkaI03FZZ3XGW9Ag2yAMZlBU0DbZKIsu4h0dkbe7H3jBXcT4KgGiy30vXbgJ1S8EhWLNpFY74kxHMQAndoEO-iwVZypXQVqrXbpql3SaleB-luBmqP09WHH1Axg_gkPmUfC-z3hwfaw_W9jdb68iiDKk73c4gjzUa7DL1XGegt1--lSLS_k7dfr64X6kf0B7Xaohg</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Matz, Carsten</creator><creator>Bergfeld, Tanja</creator><creator>Rice, Scott A.</creator><creator>Kjelleberg, Staffan</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>200403</creationdate><title>Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing</title><author>Matz, Carsten ; Bergfeld, Tanja ; Rice, Scott A. ; Kjelleberg, Staffan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4996-24f9052bde2da3aa8559c49096dd9d71984831beae9be0093eb5ecb3266fb5ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adaptation, Biological</topic><topic>Alginates</topic><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Biofilms - growth &amp; development</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Fimbriae, Bacterial - genetics</topic><topic>Flagella - genetics</topic><topic>Glucuronic Acid - biosynthesis</topic><topic>Glucuronic Acid - genetics</topic><topic>Hexuronic Acids</topic><topic>Kinetoplastida - physiology</topic><topic>Microscopy, Fluorescence</topic><topic>Mutation</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - cytology</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - growth &amp; development</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Trans-Activators - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matz, Carsten</creatorcontrib><creatorcontrib>Bergfeld, Tanja</creatorcontrib><creatorcontrib>Rice, Scott A.</creatorcontrib><creatorcontrib>Kjelleberg, Staffan</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matz, Carsten</au><au>Bergfeld, Tanja</au><au>Rice, Scott A.</au><au>Kjelleberg, Staffan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2004-03</date><risdate>2004</risdate><volume>6</volume><issue>3</issue><spage>218</spage><epage>226</epage><pages>218-226</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary This study was based on the hypothesis that biofilms of the opportunistic pathogen Pseudomonas aeruginosa are successfully adapted to situations of protozoan grazing. We tested P. aeruginosa wild type and strains that were genetically altered, in structural and regulatory features of biofilm development, in response to the common surface‐feeding flagellate Rhynchomonas nasuta. Early biofilms of the wild type showed the formation of grazing resistant microcolonies in the presence of the flagellate, whereas biofilms without the predator were undifferentiated. Grazing on biofilms of quorum sensing mutants (lasR and rhlR/lasR) also resulted in the formation of microcolonies, however, in lower numbers and size compared to the wild type. Considerably fewer microcolonies than the wild type were formed by mutant cells lacking type IV pili, whereas no microcolonies were formed by flagella‐deficient cells. The alginate‐overproducing strain PDO300 developed larger microcolonies in response to grazing. These observations suggest a role of quorum sensing in early biofilms and involvement of flagella, type IV pili, and alginate in microcolony formation in the presence of grazing. More mature biofilms of the wild type exhibited acute toxicity to the flagellate R. nasuta. Rapid growth of the flagellate on rhlR/lasR mutant biofilms indicated a key role of quorum sensing in the upregulation of lethal factors and in grazing protection of late biofilms. Both the formation of microcolonies and the production of toxins are effective mechanisms that may allow P. aeruginosa biofilms to resist protozoan grazing and to persist in the environment.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>14871206</pmid><doi>10.1111/j.1462-2920.2004.00556.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2004-03, Vol.6 (3), p.218-226
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_17270198
source Wiley
subjects Adaptation, Biological
Alginates
Animals
Bacterial Proteins - genetics
Biofilms - growth & development
DNA-Binding Proteins - genetics
Fimbriae, Bacterial - genetics
Flagella - genetics
Glucuronic Acid - biosynthesis
Glucuronic Acid - genetics
Hexuronic Acids
Kinetoplastida - physiology
Microscopy, Fluorescence
Mutation
Pseudomonas aeruginosa
Pseudomonas aeruginosa - cytology
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - growth & development
Pseudomonas aeruginosa - physiology
Trans-Activators - genetics
title Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microcolonies,%20quorum%20sensing%20and%20cytotoxicity%20determine%20the%20survival%20of%20Pseudomonas%20aeruginosa%20biofilms%20exposed%20to%20protozoan%20grazing&rft.jtitle=Environmental%20microbiology&rft.au=Matz,%20Carsten&rft.date=2004-03&rft.volume=6&rft.issue=3&rft.spage=218&rft.epage=226&rft.pages=218-226&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/j.1462-2920.2004.00556.x&rft_dat=%3Cproquest_cross%3E17270198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4996-24f9052bde2da3aa8559c49096dd9d71984831beae9be0093eb5ecb3266fb5ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17270198&rft_id=info:pmid/14871206&rfr_iscdi=true