Loading…
Quantitative Adverse Outcome Pathway Analysis of Hatching in Zebrafish with CuO Nanoparticles
This study develops and evaluates a mechanistic model of the hatching of zebrafish eggs that were exposed to CuO engineered nanoparticles (ENP) in a high-throughput screening system and places this model in an adverse outcome pathway (AOP) that also includes CuO ENP dissolution and Cu bioaccumulatio...
Saved in:
Published in: | Environmental science & technology 2015-10, Vol.49 (19), p.11817-11824 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study develops and evaluates a mechanistic model of the hatching of zebrafish eggs that were exposed to CuO engineered nanoparticles (ENP) in a high-throughput screening system and places this model in an adverse outcome pathway (AOP) that also includes CuO ENP dissolution and Cu bioaccumulation. Cu2+ inhibits the proteolytic activity of Zebrafish Hatching Enzyme 1 and thereby delay or impair hatching success. This study demonstrates that noncompetitive inhibition kinetics describe the impact of dissolved Cu on hatching; it is estimated that indefinitely long exposure to 1.88 μM dissolved Cu in the environment reduces hatching enzyme activity by 50%. The complexity arising from CuO ENP dissolution and CuO ENP assisted bioaccumulation of Cu has led to apparently contradictory findings about ion versus “nano” effects on hatching. Model-mediated data analyses indicate that, relative to copper salts, CuO ENPs increase the uptake rates of Cu into the perivitelline space up to 8 times. The toxicity assessment framework in this study can be adapted to accommodate other types of toxicant, environmental samples and other aquatic oviparous species. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.5b01837 |