Loading…
Stress-caused anergy of leukocytes towards Staphylococcal enterotoxin B and exposure transcriptome signatures
Leucocytes from soldiers exposed to battlefield-like stress (RASP: Rangers Assessment and Selection Program) were exposed in vitro to Staphylococcal enterotoxin B (SEB). We assayed SEB-induced regulation of gene expression, both in the presence and absence of severe stress, to generate two sets of g...
Saved in:
Published in: | Genes and immunity 2015-07, Vol.16 (5), p.330-346 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Leucocytes from soldiers exposed to battlefield-like stress (RASP: Rangers Assessment and Selection Program) were exposed
in vitro
to
Staphylococcal enterotoxin
B (SEB). We assayed SEB-induced regulation of gene expression, both in the presence and absence of severe stress, to generate two sets of gene profiles. One set of transcripts and microRNAs were specific to post-RASP SEB exposure, and another set were signatures of SEB exposure common to both the pre- and post-RASP leucocytes. Pathways and upstream regulatory analyses indicated that the post-RASP SEB-signature transcripts were manifestation of the anergic state of post-RASP leucocytes. These were further verified using expression-based predictions of cellular processes and literature searches. Specificity of the second set of transcripts to SEB exposure was verified using machine-learning algorithms on our and four other (Gene Expression Omnibus) data sets. Cell adhesion, coagulation, hypoxia and vascular endothelial growth factor-mediated vascular leakage were SEB-specific pathways even under the background of severe stress. Hsa-miR-155-3p was the top SEB exposure predictor in our data set, and C-X-C motif chemokine ligand 9 was SEB specific in all the analyzed data sets. The SEB-signature transcripts (which also showed distinct expression signatures from
Yersinia pestis
and dengue virus) may serve as potential biomarkers of SEB exposure even under the background of stress. |
---|---|
ISSN: | 1466-4879 1476-5470 |
DOI: | 10.1038/gene.2015.16 |