Loading…
The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram
Abstract Research has shown that the ‘spatial QRS-T angle’ (SA) and the ‘spatial ventricular gradient’ (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA...
Saved in:
Published in: | Journal of electrocardiology 2015-11, Vol.48 (6), p.1045-1052 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3 |
container_end_page | 1052 |
container_issue | 6 |
container_start_page | 1045 |
container_title | Journal of electrocardiology |
container_volume | 48 |
creator | Guldenring, Daniel, MEng, PhD Finlay, Dewar D., BSc, PhD Bond, Raymond R., BSc, PhD Kennedy, Alan, BSc McLaughlin, James, PhD Galeotti, Loriano, PhD Strauss, David G., MD, PhD |
description | Abstract Research has shown that the ‘spatial QRS-T angle’ (SA) and the ‘spatial ventricular gradient’ (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA and the SVG are therefore frequently derived from 12-lead electrocardiogram (ECG) data using linear lead transformation matrices. This research compares the performance of two previously published linear lead transformation matrices (Kors and ML2VCG) in deriving the SA and the SVG from Mason-Likar (ML) 12-lead ECG data. This comparison was performed through an analysis of the estimation errors that are made when deriving the SA and the SVG for all 181 subjects in the study population. The estimation errors were quantified as the systematic error (mean difference) and the random error (span of the Bland-Altman 95% limits of agreement). The random error was found to be the dominating error component for both the Kors and the ML2VCG matrix. The random error [ML2VCG; Kors; result of the paired, two-sided Pitman-Morgan test for statistical significance of differences in the error variance between ML2VCG and Kors] for the vectorcardiographic parameters SA, magnitude of the SVG, elevation of the SVG and azimuth of the SVG were found to be [37.33°; 50.52°; p < 0.001], [30.17 mV ms; 39.09 mV ms; p < 0.001], [36.77°; 47.62°; p = 0.001] and [63.45°; 80.32°; p < 0.001] respectively. The findings of this research indicate that in comparison to the Kors matrix the ML2VCG provides greater precision for estimating the SA and SVG from ML 12-lead ECG data. |
doi_str_mv | 10.1016/j.jelectrocard.2015.08.009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1728258812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0022073615002319</els_id><sourcerecordid>1728258812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3</originalsourceid><addsrcrecordid>eNqNks1u1DAQxy1ERZfCK6CIE5cEf6wThwMSKlAqbYWgy9ny2pPFqTde7GSl3voOvGGfhFm2oJYTF9tj_2bG858h5CWjFaOsft1XPQSwY4rWJFdxymRFVUVp-4jMmBS8VHNBH5MZpZyXtBH1MXmac0-R4A1_Qo55LRRrWjUjN8vvUDhIfmdGH4cidsWIN3mLpgnFl6-X5bIwwzoAru7B2w6GMXk7BZOKdTLOo11M2Q_r39iFyXG4vfm58FcIMF4GMK6493Ef0WvzjBx1JmR4frefkG8fPyxPP5WLz2fnp-8WpZVUjiXUXd3KRmL9K86MbEEw5kRXA3coytxYZQUmkHMlrXANVs0ZUFmDYsq6lTghrw5xtyn-mCCPeuOzhRDMAHHKmjVccakU44i-OaA2xZwTdHqb_Maka82o3ndA9_p-B_S-A5oqjfqi84u7PNNqA-6v6x_JEXh_AACr3XlIOluUzoLzCUNqF_3_5Xn7Txgb_OCtCVdwDbmPUxpQT8105prqy_0s7EeBSTwJ1opfALW0yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728258812</pqid></control><display><type>article</type><title>The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram</title><source>ScienceDirect Journals</source><creator>Guldenring, Daniel, MEng, PhD ; Finlay, Dewar D., BSc, PhD ; Bond, Raymond R., BSc, PhD ; Kennedy, Alan, BSc ; McLaughlin, James, PhD ; Galeotti, Loriano, PhD ; Strauss, David G., MD, PhD</creator><creatorcontrib>Guldenring, Daniel, MEng, PhD ; Finlay, Dewar D., BSc, PhD ; Bond, Raymond R., BSc, PhD ; Kennedy, Alan, BSc ; McLaughlin, James, PhD ; Galeotti, Loriano, PhD ; Strauss, David G., MD, PhD</creatorcontrib><description>Abstract Research has shown that the ‘spatial QRS-T angle’ (SA) and the ‘spatial ventricular gradient’ (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA and the SVG are therefore frequently derived from 12-lead electrocardiogram (ECG) data using linear lead transformation matrices. This research compares the performance of two previously published linear lead transformation matrices (Kors and ML2VCG) in deriving the SA and the SVG from Mason-Likar (ML) 12-lead ECG data. This comparison was performed through an analysis of the estimation errors that are made when deriving the SA and the SVG for all 181 subjects in the study population. The estimation errors were quantified as the systematic error (mean difference) and the random error (span of the Bland-Altman 95% limits of agreement). The random error was found to be the dominating error component for both the Kors and the ML2VCG matrix. The random error [ML2VCG; Kors; result of the paired, two-sided Pitman-Morgan test for statistical significance of differences in the error variance between ML2VCG and Kors] for the vectorcardiographic parameters SA, magnitude of the SVG, elevation of the SVG and azimuth of the SVG were found to be [37.33°; 50.52°; p < 0.001], [30.17 mV ms; 39.09 mV ms; p < 0.001], [36.77°; 47.62°; p = 0.001] and [63.45°; 80.32°; p < 0.001] respectively. The findings of this research indicate that in comparison to the Kors matrix the ML2VCG provides greater precision for estimating the SA and SVG from ML 12-lead ECG data.</description><identifier>ISSN: 0022-0736</identifier><identifier>EISSN: 1532-8430</identifier><identifier>DOI: 10.1016/j.jelectrocard.2015.08.009</identifier><identifier>PMID: 26381798</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Arrhythmias, Cardiac - diagnosis ; Arrhythmias, Cardiac - physiopathology ; Body Surface Potential Mapping - methods ; Cardiovascular ; Computer Simulation ; Derivation of the Frank VCG ; Diagnosis, Computer-Assisted - methods ; Estimation of the Frank VCG ; Heart Conduction System - physiopathology ; Heart Ventricles - physiopathology ; Humans ; Linear lead transformations ; Mason–Likar 12-lead ECG ; Models, Cardiovascular ; Reproducibility of Results ; Sensitivity and Specificity ; Spatial QRS-T angle ; Spatial ventricular gradient ; Spatio-Temporal Analysis</subject><ispartof>Journal of electrocardiology, 2015-11, Vol.48 (6), p.1045-1052</ispartof><rights>Elsevier Inc.</rights><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3</citedby><cites>FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3</cites><orcidid>0000-0002-8847-2744 ; 0000-0001-6026-8971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26381798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guldenring, Daniel, MEng, PhD</creatorcontrib><creatorcontrib>Finlay, Dewar D., BSc, PhD</creatorcontrib><creatorcontrib>Bond, Raymond R., BSc, PhD</creatorcontrib><creatorcontrib>Kennedy, Alan, BSc</creatorcontrib><creatorcontrib>McLaughlin, James, PhD</creatorcontrib><creatorcontrib>Galeotti, Loriano, PhD</creatorcontrib><creatorcontrib>Strauss, David G., MD, PhD</creatorcontrib><title>The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram</title><title>Journal of electrocardiology</title><addtitle>J Electrocardiol</addtitle><description>Abstract Research has shown that the ‘spatial QRS-T angle’ (SA) and the ‘spatial ventricular gradient’ (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA and the SVG are therefore frequently derived from 12-lead electrocardiogram (ECG) data using linear lead transformation matrices. This research compares the performance of two previously published linear lead transformation matrices (Kors and ML2VCG) in deriving the SA and the SVG from Mason-Likar (ML) 12-lead ECG data. This comparison was performed through an analysis of the estimation errors that are made when deriving the SA and the SVG for all 181 subjects in the study population. The estimation errors were quantified as the systematic error (mean difference) and the random error (span of the Bland-Altman 95% limits of agreement). The random error was found to be the dominating error component for both the Kors and the ML2VCG matrix. The random error [ML2VCG; Kors; result of the paired, two-sided Pitman-Morgan test for statistical significance of differences in the error variance between ML2VCG and Kors] for the vectorcardiographic parameters SA, magnitude of the SVG, elevation of the SVG and azimuth of the SVG were found to be [37.33°; 50.52°; p < 0.001], [30.17 mV ms; 39.09 mV ms; p < 0.001], [36.77°; 47.62°; p = 0.001] and [63.45°; 80.32°; p < 0.001] respectively. The findings of this research indicate that in comparison to the Kors matrix the ML2VCG provides greater precision for estimating the SA and SVG from ML 12-lead ECG data.</description><subject>Arrhythmias, Cardiac - diagnosis</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Body Surface Potential Mapping - methods</subject><subject>Cardiovascular</subject><subject>Computer Simulation</subject><subject>Derivation of the Frank VCG</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Estimation of the Frank VCG</subject><subject>Heart Conduction System - physiopathology</subject><subject>Heart Ventricles - physiopathology</subject><subject>Humans</subject><subject>Linear lead transformations</subject><subject>Mason–Likar 12-lead ECG</subject><subject>Models, Cardiovascular</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Spatial QRS-T angle</subject><subject>Spatial ventricular gradient</subject><subject>Spatio-Temporal Analysis</subject><issn>0022-0736</issn><issn>1532-8430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNks1u1DAQxy1ERZfCK6CIE5cEf6wThwMSKlAqbYWgy9ny2pPFqTde7GSl3voOvGGfhFm2oJYTF9tj_2bG858h5CWjFaOsft1XPQSwY4rWJFdxymRFVUVp-4jMmBS8VHNBH5MZpZyXtBH1MXmac0-R4A1_Qo55LRRrWjUjN8vvUDhIfmdGH4cidsWIN3mLpgnFl6-X5bIwwzoAru7B2w6GMXk7BZOKdTLOo11M2Q_r39iFyXG4vfm58FcIMF4GMK6493Ef0WvzjBx1JmR4frefkG8fPyxPP5WLz2fnp-8WpZVUjiXUXd3KRmL9K86MbEEw5kRXA3coytxYZQUmkHMlrXANVs0ZUFmDYsq6lTghrw5xtyn-mCCPeuOzhRDMAHHKmjVccakU44i-OaA2xZwTdHqb_Maka82o3ndA9_p-B_S-A5oqjfqi84u7PNNqA-6v6x_JEXh_AACr3XlIOluUzoLzCUNqF_3_5Xn7Txgb_OCtCVdwDbmPUxpQT8105prqy_0s7EeBSTwJ1opfALW0yg</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Guldenring, Daniel, MEng, PhD</creator><creator>Finlay, Dewar D., BSc, PhD</creator><creator>Bond, Raymond R., BSc, PhD</creator><creator>Kennedy, Alan, BSc</creator><creator>McLaughlin, James, PhD</creator><creator>Galeotti, Loriano, PhD</creator><creator>Strauss, David G., MD, PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8847-2744</orcidid><orcidid>https://orcid.org/0000-0001-6026-8971</orcidid></search><sort><creationdate>20151101</creationdate><title>The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram</title><author>Guldenring, Daniel, MEng, PhD ; Finlay, Dewar D., BSc, PhD ; Bond, Raymond R., BSc, PhD ; Kennedy, Alan, BSc ; McLaughlin, James, PhD ; Galeotti, Loriano, PhD ; Strauss, David G., MD, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrhythmias, Cardiac - diagnosis</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Body Surface Potential Mapping - methods</topic><topic>Cardiovascular</topic><topic>Computer Simulation</topic><topic>Derivation of the Frank VCG</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Estimation of the Frank VCG</topic><topic>Heart Conduction System - physiopathology</topic><topic>Heart Ventricles - physiopathology</topic><topic>Humans</topic><topic>Linear lead transformations</topic><topic>Mason–Likar 12-lead ECG</topic><topic>Models, Cardiovascular</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Spatial QRS-T angle</topic><topic>Spatial ventricular gradient</topic><topic>Spatio-Temporal Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guldenring, Daniel, MEng, PhD</creatorcontrib><creatorcontrib>Finlay, Dewar D., BSc, PhD</creatorcontrib><creatorcontrib>Bond, Raymond R., BSc, PhD</creatorcontrib><creatorcontrib>Kennedy, Alan, BSc</creatorcontrib><creatorcontrib>McLaughlin, James, PhD</creatorcontrib><creatorcontrib>Galeotti, Loriano, PhD</creatorcontrib><creatorcontrib>Strauss, David G., MD, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guldenring, Daniel, MEng, PhD</au><au>Finlay, Dewar D., BSc, PhD</au><au>Bond, Raymond R., BSc, PhD</au><au>Kennedy, Alan, BSc</au><au>McLaughlin, James, PhD</au><au>Galeotti, Loriano, PhD</au><au>Strauss, David G., MD, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram</atitle><jtitle>Journal of electrocardiology</jtitle><addtitle>J Electrocardiol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>48</volume><issue>6</issue><spage>1045</spage><epage>1052</epage><pages>1045-1052</pages><issn>0022-0736</issn><eissn>1532-8430</eissn><abstract>Abstract Research has shown that the ‘spatial QRS-T angle’ (SA) and the ‘spatial ventricular gradient’ (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA and the SVG are therefore frequently derived from 12-lead electrocardiogram (ECG) data using linear lead transformation matrices. This research compares the performance of two previously published linear lead transformation matrices (Kors and ML2VCG) in deriving the SA and the SVG from Mason-Likar (ML) 12-lead ECG data. This comparison was performed through an analysis of the estimation errors that are made when deriving the SA and the SVG for all 181 subjects in the study population. The estimation errors were quantified as the systematic error (mean difference) and the random error (span of the Bland-Altman 95% limits of agreement). The random error was found to be the dominating error component for both the Kors and the ML2VCG matrix. The random error [ML2VCG; Kors; result of the paired, two-sided Pitman-Morgan test for statistical significance of differences in the error variance between ML2VCG and Kors] for the vectorcardiographic parameters SA, magnitude of the SVG, elevation of the SVG and azimuth of the SVG were found to be [37.33°; 50.52°; p < 0.001], [30.17 mV ms; 39.09 mV ms; p < 0.001], [36.77°; 47.62°; p = 0.001] and [63.45°; 80.32°; p < 0.001] respectively. The findings of this research indicate that in comparison to the Kors matrix the ML2VCG provides greater precision for estimating the SA and SVG from ML 12-lead ECG data.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26381798</pmid><doi>10.1016/j.jelectrocard.2015.08.009</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8847-2744</orcidid><orcidid>https://orcid.org/0000-0001-6026-8971</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0736 |
ispartof | Journal of electrocardiology, 2015-11, Vol.48 (6), p.1045-1052 |
issn | 0022-0736 1532-8430 |
language | eng |
recordid | cdi_proquest_miscellaneous_1728258812 |
source | ScienceDirect Journals |
subjects | Arrhythmias, Cardiac - diagnosis Arrhythmias, Cardiac - physiopathology Body Surface Potential Mapping - methods Cardiovascular Computer Simulation Derivation of the Frank VCG Diagnosis, Computer-Assisted - methods Estimation of the Frank VCG Heart Conduction System - physiopathology Heart Ventricles - physiopathology Humans Linear lead transformations Mason–Likar 12-lead ECG Models, Cardiovascular Reproducibility of Results Sensitivity and Specificity Spatial QRS-T angle Spatial ventricular gradient Spatio-Temporal Analysis |
title | The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20derivation%20of%20the%20spatial%20QRS-T%20angle%20and%20the%20spatial%20ventricular%20gradient%20using%20the%20Mason%E2%80%93Likar%2012-lead%20electrocardiogram&rft.jtitle=Journal%20of%20electrocardiology&rft.au=Guldenring,%20Daniel,%20MEng,%20PhD&rft.date=2015-11-01&rft.volume=48&rft.issue=6&rft.spage=1045&rft.epage=1052&rft.pages=1045-1052&rft.issn=0022-0736&rft.eissn=1532-8430&rft_id=info:doi/10.1016/j.jelectrocard.2015.08.009&rft_dat=%3Cproquest_cross%3E1728258812%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1728258812&rft_id=info:pmid/26381798&rfr_iscdi=true |