Loading…

The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram

Abstract Research has shown that the ‘spatial QRS-T angle’ (SA) and the ‘spatial ventricular gradient’ (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electrocardiology 2015-11, Vol.48 (6), p.1045-1052
Main Authors: Guldenring, Daniel, MEng, PhD, Finlay, Dewar D., BSc, PhD, Bond, Raymond R., BSc, PhD, Kennedy, Alan, BSc, McLaughlin, James, PhD, Galeotti, Loriano, PhD, Strauss, David G., MD, PhD
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3
cites cdi_FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3
container_end_page 1052
container_issue 6
container_start_page 1045
container_title Journal of electrocardiology
container_volume 48
creator Guldenring, Daniel, MEng, PhD
Finlay, Dewar D., BSc, PhD
Bond, Raymond R., BSc, PhD
Kennedy, Alan, BSc
McLaughlin, James, PhD
Galeotti, Loriano, PhD
Strauss, David G., MD, PhD
description Abstract Research has shown that the ‘spatial QRS-T angle’ (SA) and the ‘spatial ventricular gradient’ (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA and the SVG are therefore frequently derived from 12-lead electrocardiogram (ECG) data using linear lead transformation matrices. This research compares the performance of two previously published linear lead transformation matrices (Kors and ML2VCG) in deriving the SA and the SVG from Mason-Likar (ML) 12-lead ECG data. This comparison was performed through an analysis of the estimation errors that are made when deriving the SA and the SVG for all 181 subjects in the study population. The estimation errors were quantified as the systematic error (mean difference) and the random error (span of the Bland-Altman 95% limits of agreement). The random error was found to be the dominating error component for both the Kors and the ML2VCG matrix. The random error [ML2VCG; Kors; result of the paired, two-sided Pitman-Morgan test for statistical significance of differences in the error variance between ML2VCG and Kors] for the vectorcardiographic parameters SA, magnitude of the SVG, elevation of the SVG and azimuth of the SVG were found to be [37.33°; 50.52°; p < 0.001], [30.17 mV ms; 39.09 mV ms; p < 0.001], [36.77°; 47.62°; p = 0.001] and [63.45°; 80.32°; p < 0.001] respectively. The findings of this research indicate that in comparison to the Kors matrix the ML2VCG provides greater precision for estimating the SA and SVG from ML 12-lead ECG data.
doi_str_mv 10.1016/j.jelectrocard.2015.08.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1728258812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0022073615002319</els_id><sourcerecordid>1728258812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3</originalsourceid><addsrcrecordid>eNqNks1u1DAQxy1ERZfCK6CIE5cEf6wThwMSKlAqbYWgy9ny2pPFqTde7GSl3voOvGGfhFm2oJYTF9tj_2bG858h5CWjFaOsft1XPQSwY4rWJFdxymRFVUVp-4jMmBS8VHNBH5MZpZyXtBH1MXmac0-R4A1_Qo55LRRrWjUjN8vvUDhIfmdGH4cidsWIN3mLpgnFl6-X5bIwwzoAru7B2w6GMXk7BZOKdTLOo11M2Q_r39iFyXG4vfm58FcIMF4GMK6493Ef0WvzjBx1JmR4frefkG8fPyxPP5WLz2fnp-8WpZVUjiXUXd3KRmL9K86MbEEw5kRXA3coytxYZQUmkHMlrXANVs0ZUFmDYsq6lTghrw5xtyn-mCCPeuOzhRDMAHHKmjVccakU44i-OaA2xZwTdHqb_Maka82o3ndA9_p-B_S-A5oqjfqi84u7PNNqA-6v6x_JEXh_AACr3XlIOluUzoLzCUNqF_3_5Xn7Txgb_OCtCVdwDbmPUxpQT8105prqy_0s7EeBSTwJ1opfALW0yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728258812</pqid></control><display><type>article</type><title>The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram</title><source>ScienceDirect Journals</source><creator>Guldenring, Daniel, MEng, PhD ; Finlay, Dewar D., BSc, PhD ; Bond, Raymond R., BSc, PhD ; Kennedy, Alan, BSc ; McLaughlin, James, PhD ; Galeotti, Loriano, PhD ; Strauss, David G., MD, PhD</creator><creatorcontrib>Guldenring, Daniel, MEng, PhD ; Finlay, Dewar D., BSc, PhD ; Bond, Raymond R., BSc, PhD ; Kennedy, Alan, BSc ; McLaughlin, James, PhD ; Galeotti, Loriano, PhD ; Strauss, David G., MD, PhD</creatorcontrib><description>Abstract Research has shown that the ‘spatial QRS-T angle’ (SA) and the ‘spatial ventricular gradient’ (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA and the SVG are therefore frequently derived from 12-lead electrocardiogram (ECG) data using linear lead transformation matrices. This research compares the performance of two previously published linear lead transformation matrices (Kors and ML2VCG) in deriving the SA and the SVG from Mason-Likar (ML) 12-lead ECG data. This comparison was performed through an analysis of the estimation errors that are made when deriving the SA and the SVG for all 181 subjects in the study population. The estimation errors were quantified as the systematic error (mean difference) and the random error (span of the Bland-Altman 95% limits of agreement). The random error was found to be the dominating error component for both the Kors and the ML2VCG matrix. The random error [ML2VCG; Kors; result of the paired, two-sided Pitman-Morgan test for statistical significance of differences in the error variance between ML2VCG and Kors] for the vectorcardiographic parameters SA, magnitude of the SVG, elevation of the SVG and azimuth of the SVG were found to be [37.33°; 50.52°; p &lt; 0.001], [30.17 mV ms; 39.09 mV ms; p &lt; 0.001], [36.77°; 47.62°; p = 0.001] and [63.45°; 80.32°; p &lt; 0.001] respectively. The findings of this research indicate that in comparison to the Kors matrix the ML2VCG provides greater precision for estimating the SA and SVG from ML 12-lead ECG data.</description><identifier>ISSN: 0022-0736</identifier><identifier>EISSN: 1532-8430</identifier><identifier>DOI: 10.1016/j.jelectrocard.2015.08.009</identifier><identifier>PMID: 26381798</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Arrhythmias, Cardiac - diagnosis ; Arrhythmias, Cardiac - physiopathology ; Body Surface Potential Mapping - methods ; Cardiovascular ; Computer Simulation ; Derivation of the Frank VCG ; Diagnosis, Computer-Assisted - methods ; Estimation of the Frank VCG ; Heart Conduction System - physiopathology ; Heart Ventricles - physiopathology ; Humans ; Linear lead transformations ; Mason–Likar 12-lead ECG ; Models, Cardiovascular ; Reproducibility of Results ; Sensitivity and Specificity ; Spatial QRS-T angle ; Spatial ventricular gradient ; Spatio-Temporal Analysis</subject><ispartof>Journal of electrocardiology, 2015-11, Vol.48 (6), p.1045-1052</ispartof><rights>Elsevier Inc.</rights><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3</citedby><cites>FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3</cites><orcidid>0000-0002-8847-2744 ; 0000-0001-6026-8971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26381798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guldenring, Daniel, MEng, PhD</creatorcontrib><creatorcontrib>Finlay, Dewar D., BSc, PhD</creatorcontrib><creatorcontrib>Bond, Raymond R., BSc, PhD</creatorcontrib><creatorcontrib>Kennedy, Alan, BSc</creatorcontrib><creatorcontrib>McLaughlin, James, PhD</creatorcontrib><creatorcontrib>Galeotti, Loriano, PhD</creatorcontrib><creatorcontrib>Strauss, David G., MD, PhD</creatorcontrib><title>The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram</title><title>Journal of electrocardiology</title><addtitle>J Electrocardiol</addtitle><description>Abstract Research has shown that the ‘spatial QRS-T angle’ (SA) and the ‘spatial ventricular gradient’ (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA and the SVG are therefore frequently derived from 12-lead electrocardiogram (ECG) data using linear lead transformation matrices. This research compares the performance of two previously published linear lead transformation matrices (Kors and ML2VCG) in deriving the SA and the SVG from Mason-Likar (ML) 12-lead ECG data. This comparison was performed through an analysis of the estimation errors that are made when deriving the SA and the SVG for all 181 subjects in the study population. The estimation errors were quantified as the systematic error (mean difference) and the random error (span of the Bland-Altman 95% limits of agreement). The random error was found to be the dominating error component for both the Kors and the ML2VCG matrix. The random error [ML2VCG; Kors; result of the paired, two-sided Pitman-Morgan test for statistical significance of differences in the error variance between ML2VCG and Kors] for the vectorcardiographic parameters SA, magnitude of the SVG, elevation of the SVG and azimuth of the SVG were found to be [37.33°; 50.52°; p &lt; 0.001], [30.17 mV ms; 39.09 mV ms; p &lt; 0.001], [36.77°; 47.62°; p = 0.001] and [63.45°; 80.32°; p &lt; 0.001] respectively. The findings of this research indicate that in comparison to the Kors matrix the ML2VCG provides greater precision for estimating the SA and SVG from ML 12-lead ECG data.</description><subject>Arrhythmias, Cardiac - diagnosis</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Body Surface Potential Mapping - methods</subject><subject>Cardiovascular</subject><subject>Computer Simulation</subject><subject>Derivation of the Frank VCG</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Estimation of the Frank VCG</subject><subject>Heart Conduction System - physiopathology</subject><subject>Heart Ventricles - physiopathology</subject><subject>Humans</subject><subject>Linear lead transformations</subject><subject>Mason–Likar 12-lead ECG</subject><subject>Models, Cardiovascular</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Spatial QRS-T angle</subject><subject>Spatial ventricular gradient</subject><subject>Spatio-Temporal Analysis</subject><issn>0022-0736</issn><issn>1532-8430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNks1u1DAQxy1ERZfCK6CIE5cEf6wThwMSKlAqbYWgy9ny2pPFqTde7GSl3voOvGGfhFm2oJYTF9tj_2bG858h5CWjFaOsft1XPQSwY4rWJFdxymRFVUVp-4jMmBS8VHNBH5MZpZyXtBH1MXmac0-R4A1_Qo55LRRrWjUjN8vvUDhIfmdGH4cidsWIN3mLpgnFl6-X5bIwwzoAru7B2w6GMXk7BZOKdTLOo11M2Q_r39iFyXG4vfm58FcIMF4GMK6493Ef0WvzjBx1JmR4frefkG8fPyxPP5WLz2fnp-8WpZVUjiXUXd3KRmL9K86MbEEw5kRXA3coytxYZQUmkHMlrXANVs0ZUFmDYsq6lTghrw5xtyn-mCCPeuOzhRDMAHHKmjVccakU44i-OaA2xZwTdHqb_Maka82o3ndA9_p-B_S-A5oqjfqi84u7PNNqA-6v6x_JEXh_AACr3XlIOluUzoLzCUNqF_3_5Xn7Txgb_OCtCVdwDbmPUxpQT8105prqy_0s7EeBSTwJ1opfALW0yg</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Guldenring, Daniel, MEng, PhD</creator><creator>Finlay, Dewar D., BSc, PhD</creator><creator>Bond, Raymond R., BSc, PhD</creator><creator>Kennedy, Alan, BSc</creator><creator>McLaughlin, James, PhD</creator><creator>Galeotti, Loriano, PhD</creator><creator>Strauss, David G., MD, PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8847-2744</orcidid><orcidid>https://orcid.org/0000-0001-6026-8971</orcidid></search><sort><creationdate>20151101</creationdate><title>The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram</title><author>Guldenring, Daniel, MEng, PhD ; Finlay, Dewar D., BSc, PhD ; Bond, Raymond R., BSc, PhD ; Kennedy, Alan, BSc ; McLaughlin, James, PhD ; Galeotti, Loriano, PhD ; Strauss, David G., MD, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrhythmias, Cardiac - diagnosis</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Body Surface Potential Mapping - methods</topic><topic>Cardiovascular</topic><topic>Computer Simulation</topic><topic>Derivation of the Frank VCG</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Estimation of the Frank VCG</topic><topic>Heart Conduction System - physiopathology</topic><topic>Heart Ventricles - physiopathology</topic><topic>Humans</topic><topic>Linear lead transformations</topic><topic>Mason–Likar 12-lead ECG</topic><topic>Models, Cardiovascular</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Spatial QRS-T angle</topic><topic>Spatial ventricular gradient</topic><topic>Spatio-Temporal Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guldenring, Daniel, MEng, PhD</creatorcontrib><creatorcontrib>Finlay, Dewar D., BSc, PhD</creatorcontrib><creatorcontrib>Bond, Raymond R., BSc, PhD</creatorcontrib><creatorcontrib>Kennedy, Alan, BSc</creatorcontrib><creatorcontrib>McLaughlin, James, PhD</creatorcontrib><creatorcontrib>Galeotti, Loriano, PhD</creatorcontrib><creatorcontrib>Strauss, David G., MD, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guldenring, Daniel, MEng, PhD</au><au>Finlay, Dewar D., BSc, PhD</au><au>Bond, Raymond R., BSc, PhD</au><au>Kennedy, Alan, BSc</au><au>McLaughlin, James, PhD</au><au>Galeotti, Loriano, PhD</au><au>Strauss, David G., MD, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram</atitle><jtitle>Journal of electrocardiology</jtitle><addtitle>J Electrocardiol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>48</volume><issue>6</issue><spage>1045</spage><epage>1052</epage><pages>1045-1052</pages><issn>0022-0736</issn><eissn>1532-8430</eissn><abstract>Abstract Research has shown that the ‘spatial QRS-T angle’ (SA) and the ‘spatial ventricular gradient’ (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA and the SVG are therefore frequently derived from 12-lead electrocardiogram (ECG) data using linear lead transformation matrices. This research compares the performance of two previously published linear lead transformation matrices (Kors and ML2VCG) in deriving the SA and the SVG from Mason-Likar (ML) 12-lead ECG data. This comparison was performed through an analysis of the estimation errors that are made when deriving the SA and the SVG for all 181 subjects in the study population. The estimation errors were quantified as the systematic error (mean difference) and the random error (span of the Bland-Altman 95% limits of agreement). The random error was found to be the dominating error component for both the Kors and the ML2VCG matrix. The random error [ML2VCG; Kors; result of the paired, two-sided Pitman-Morgan test for statistical significance of differences in the error variance between ML2VCG and Kors] for the vectorcardiographic parameters SA, magnitude of the SVG, elevation of the SVG and azimuth of the SVG were found to be [37.33°; 50.52°; p &lt; 0.001], [30.17 mV ms; 39.09 mV ms; p &lt; 0.001], [36.77°; 47.62°; p = 0.001] and [63.45°; 80.32°; p &lt; 0.001] respectively. The findings of this research indicate that in comparison to the Kors matrix the ML2VCG provides greater precision for estimating the SA and SVG from ML 12-lead ECG data.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26381798</pmid><doi>10.1016/j.jelectrocard.2015.08.009</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8847-2744</orcidid><orcidid>https://orcid.org/0000-0001-6026-8971</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-0736
ispartof Journal of electrocardiology, 2015-11, Vol.48 (6), p.1045-1052
issn 0022-0736
1532-8430
language eng
recordid cdi_proquest_miscellaneous_1728258812
source ScienceDirect Journals
subjects Arrhythmias, Cardiac - diagnosis
Arrhythmias, Cardiac - physiopathology
Body Surface Potential Mapping - methods
Cardiovascular
Computer Simulation
Derivation of the Frank VCG
Diagnosis, Computer-Assisted - methods
Estimation of the Frank VCG
Heart Conduction System - physiopathology
Heart Ventricles - physiopathology
Humans
Linear lead transformations
Mason–Likar 12-lead ECG
Models, Cardiovascular
Reproducibility of Results
Sensitivity and Specificity
Spatial QRS-T angle
Spatial ventricular gradient
Spatio-Temporal Analysis
title The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20derivation%20of%20the%20spatial%20QRS-T%20angle%20and%20the%20spatial%20ventricular%20gradient%20using%20the%20Mason%E2%80%93Likar%2012-lead%20electrocardiogram&rft.jtitle=Journal%20of%20electrocardiology&rft.au=Guldenring,%20Daniel,%20MEng,%20PhD&rft.date=2015-11-01&rft.volume=48&rft.issue=6&rft.spage=1045&rft.epage=1052&rft.pages=1045-1052&rft.issn=0022-0736&rft.eissn=1532-8430&rft_id=info:doi/10.1016/j.jelectrocard.2015.08.009&rft_dat=%3Cproquest_cross%3E1728258812%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-e6f69575016b21a59e311d3f6e2d1014ac8c3ead5485c3d707321e056e818cdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1728258812&rft_id=info:pmid/26381798&rfr_iscdi=true