Loading…

The Activity of Escherichia coli Dihydroorotate Dehydrogenase Is Dependent on a Conserved Loop Identified by Sequence Homology, Mutagenesis, and Limited Proteolysis

Dihydroorotate dehydrogenase catalyzes the oxidation of dihydroorotate to orotate. The enzyme from Escherichia coli was overproduced and characterized in comparison with the dimeric Lactococcus lactis A enzyme, whose structure is known. The two enzymes represent two distinct evolutionary families of...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1999-03, Vol.38 (10), p.2899-2908
Main Authors: Björnberg, Olof, Grüner, Anne-Charlotte, Roepstorff, Peter, Jensen, Kaj Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dihydroorotate dehydrogenase catalyzes the oxidation of dihydroorotate to orotate. The enzyme from Escherichia coli was overproduced and characterized in comparison with the dimeric Lactococcus lactis A enzyme, whose structure is known. The two enzymes represent two distinct evolutionary families of dihydroorotate dehydrogenases, but sedimentation in sucrose gradients suggests a dimeric structure also of the E. coli enzyme. Product inhibition showed that the E. coli enzyme, in contrast to the L. lactis enzyme, has separate binding sites for dihydroorotate and the electron acceptor. Trypsin readily cleaved the E. coli enzyme into two fragments of 182 and 154 residues, respectively. Cleavage reduced the activity more than 100-fold but left other molecular properties, including the heat stability, intact. The trypsin cleavage site, at R182, is positioned in a conserved region that, in the L. lactis enzyme, forms a loop where a cysteine residue is very critical for activity. In the corresponding position, the enzyme from E. coli has a serine residue. Mutagenesis of this residue (S175) to alanine or cysteine reduced the activities 10000- and 500-fold, respectively. The S175C mutant was also defective with respect to substrate and product binding. Structural and mechanistic differences between the two different families of dihydroorotate dehydrogenase are discussed.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi982352c