Loading…

On the flow map for 2D Euler equations with unbounded vorticity

In part I, we construct a class of examples of initial velocities for which the unique solution to the Euler equations in the plane has an associated flow map that lies in no Holder space of positive exponent for any positive time. In part II, we explore inverse problems that arise in attempting to...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinearity 2011-09, Vol.24 (9), p.2599-2637
Main Author: KELLIHER, James P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3
cites cdi_FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3
container_end_page 2637
container_issue 9
container_start_page 2599
container_title Nonlinearity
container_volume 24
creator KELLIHER, James P
description In part I, we construct a class of examples of initial velocities for which the unique solution to the Euler equations in the plane has an associated flow map that lies in no Holder space of positive exponent for any positive time. In part II, we explore inverse problems that arise in attempting to construct an example of an initial velocity producing an arbitrarily poor modulus of continuity of the flow map.
doi_str_mv 10.1088/0951-7715/24/9/013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730046452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730046452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3</originalsourceid><addsrcrecordid>eNo9kL1OwzAYRS0EEqXwAkxekFhC_fkv8YRQKT9SpS4wW07yWQ1K49ZOqPr2pKLqdJdzz3AIuQf2BKwoZswoyPIc1IzLmZkxEBdkAkJDppWUl2RyBq7JTUo_jAEUXEzI86qj_Rqpb8OebtyW-hApf6WLocVIcTe4vgldovumX9OhK8PQ1VjT3xD7pmr6wy258q5NeHfaKfl-W3zNP7Ll6v1z_rLMKqFknyE3CFozKXRpUOWgAUoveC3KQtdMlU5grllRlbrOS194RDaOQuWM0c6LKXn8925j2A2YertpUoVt6zoMQ7KQC8akloqPKP9HqxhSiujtNjYbFw8WmD3WsscY9hjDcmmNHWuNp4eT36XKtT66rmrS-cmlNJqPxf4ADhFpKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730046452</pqid></control><display><type>article</type><title>On the flow map for 2D Euler equations with unbounded vorticity</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>KELLIHER, James P</creator><creatorcontrib>KELLIHER, James P</creatorcontrib><description>In part I, we construct a class of examples of initial velocities for which the unique solution to the Euler equations in the plane has an associated flow map that lies in no Holder space of positive exponent for any positive time. In part II, we explore inverse problems that arise in attempting to construct an example of an initial velocity producing an arbitrarily poor modulus of continuity of the flow map.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/24/9/013</identifier><language>eng</language><publisher>Bristol: Institute of Physics</publisher><subject>Construction ; Continuity ; Euler equations ; Exact sciences and technology ; Exponents ; Global analysis, analysis on manifolds ; Inverse problems ; Mathematical analysis ; Mathematical methods in physics ; Mathematics ; Nonlinearity ; Numerical analysis ; Numerical analysis in abstract spaces ; Numerical analysis. Scientific computation ; Other topics in mathematical methods in physics ; Partial differential equations ; Physics ; Planes ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Two dimensional</subject><ispartof>Nonlinearity, 2011-09, Vol.24 (9), p.2599-2637</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3</citedby><cites>FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24496282$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KELLIHER, James P</creatorcontrib><title>On the flow map for 2D Euler equations with unbounded vorticity</title><title>Nonlinearity</title><description>In part I, we construct a class of examples of initial velocities for which the unique solution to the Euler equations in the plane has an associated flow map that lies in no Holder space of positive exponent for any positive time. In part II, we explore inverse problems that arise in attempting to construct an example of an initial velocity producing an arbitrarily poor modulus of continuity of the flow map.</description><subject>Construction</subject><subject>Continuity</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Exponents</subject><subject>Global analysis, analysis on manifolds</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis in abstract spaces</subject><subject>Numerical analysis. Scientific computation</subject><subject>Other topics in mathematical methods in physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Planes</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Two dimensional</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAYRS0EEqXwAkxekFhC_fkv8YRQKT9SpS4wW07yWQ1K49ZOqPr2pKLqdJdzz3AIuQf2BKwoZswoyPIc1IzLmZkxEBdkAkJDppWUl2RyBq7JTUo_jAEUXEzI86qj_Rqpb8OebtyW-hApf6WLocVIcTe4vgldovumX9OhK8PQ1VjT3xD7pmr6wy258q5NeHfaKfl-W3zNP7Ll6v1z_rLMKqFknyE3CFozKXRpUOWgAUoveC3KQtdMlU5grllRlbrOS194RDaOQuWM0c6LKXn8925j2A2YertpUoVt6zoMQ7KQC8akloqPKP9HqxhSiujtNjYbFw8WmD3WsscY9hjDcmmNHWuNp4eT36XKtT66rmrS-cmlNJqPxf4ADhFpKg</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>KELLIHER, James P</creator><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110901</creationdate><title>On the flow map for 2D Euler equations with unbounded vorticity</title><author>KELLIHER, James P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Construction</topic><topic>Continuity</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Exponents</topic><topic>Global analysis, analysis on manifolds</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis in abstract spaces</topic><topic>Numerical analysis. Scientific computation</topic><topic>Other topics in mathematical methods in physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Planes</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KELLIHER, James P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KELLIHER, James P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the flow map for 2D Euler equations with unbounded vorticity</atitle><jtitle>Nonlinearity</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>24</volume><issue>9</issue><spage>2599</spage><epage>2637</epage><pages>2599-2637</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><abstract>In part I, we construct a class of examples of initial velocities for which the unique solution to the Euler equations in the plane has an associated flow map that lies in no Holder space of positive exponent for any positive time. In part II, we explore inverse problems that arise in attempting to construct an example of an initial velocity producing an arbitrarily poor modulus of continuity of the flow map.</abstract><cop>Bristol</cop><pub>Institute of Physics</pub><doi>10.1088/0951-7715/24/9/013</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2011-09, Vol.24 (9), p.2599-2637
issn 0951-7715
1361-6544
language eng
recordid cdi_proquest_miscellaneous_1730046452
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Construction
Continuity
Euler equations
Exact sciences and technology
Exponents
Global analysis, analysis on manifolds
Inverse problems
Mathematical analysis
Mathematical methods in physics
Mathematics
Nonlinearity
Numerical analysis
Numerical analysis in abstract spaces
Numerical analysis. Scientific computation
Other topics in mathematical methods in physics
Partial differential equations
Physics
Planes
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Two dimensional
title On the flow map for 2D Euler equations with unbounded vorticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20flow%20map%20for%202D%20Euler%20equations%20with%20unbounded%20vorticity&rft.jtitle=Nonlinearity&rft.au=KELLIHER,%20James%20P&rft.date=2011-09-01&rft.volume=24&rft.issue=9&rft.spage=2599&rft.epage=2637&rft.pages=2599-2637&rft.issn=0951-7715&rft.eissn=1361-6544&rft_id=info:doi/10.1088/0951-7715/24/9/013&rft_dat=%3Cproquest_cross%3E1730046452%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1730046452&rft_id=info:pmid/&rfr_iscdi=true