Loading…
On the flow map for 2D Euler equations with unbounded vorticity
In part I, we construct a class of examples of initial velocities for which the unique solution to the Euler equations in the plane has an associated flow map that lies in no Holder space of positive exponent for any positive time. In part II, we explore inverse problems that arise in attempting to...
Saved in:
Published in: | Nonlinearity 2011-09, Vol.24 (9), p.2599-2637 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3 |
container_end_page | 2637 |
container_issue | 9 |
container_start_page | 2599 |
container_title | Nonlinearity |
container_volume | 24 |
creator | KELLIHER, James P |
description | In part I, we construct a class of examples of initial velocities for which the unique solution to the Euler equations in the plane has an associated flow map that lies in no Holder space of positive exponent for any positive time. In part II, we explore inverse problems that arise in attempting to construct an example of an initial velocity producing an arbitrarily poor modulus of continuity of the flow map. |
doi_str_mv | 10.1088/0951-7715/24/9/013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730046452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730046452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3</originalsourceid><addsrcrecordid>eNo9kL1OwzAYRS0EEqXwAkxekFhC_fkv8YRQKT9SpS4wW07yWQ1K49ZOqPr2pKLqdJdzz3AIuQf2BKwoZswoyPIc1IzLmZkxEBdkAkJDppWUl2RyBq7JTUo_jAEUXEzI86qj_Rqpb8OebtyW-hApf6WLocVIcTe4vgldovumX9OhK8PQ1VjT3xD7pmr6wy258q5NeHfaKfl-W3zNP7Ll6v1z_rLMKqFknyE3CFozKXRpUOWgAUoveC3KQtdMlU5grllRlbrOS194RDaOQuWM0c6LKXn8925j2A2YertpUoVt6zoMQ7KQC8akloqPKP9HqxhSiujtNjYbFw8WmD3WsscY9hjDcmmNHWuNp4eT36XKtT66rmrS-cmlNJqPxf4ADhFpKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730046452</pqid></control><display><type>article</type><title>On the flow map for 2D Euler equations with unbounded vorticity</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>KELLIHER, James P</creator><creatorcontrib>KELLIHER, James P</creatorcontrib><description>In part I, we construct a class of examples of initial velocities for which the unique solution to the Euler equations in the plane has an associated flow map that lies in no Holder space of positive exponent for any positive time. In part II, we explore inverse problems that arise in attempting to construct an example of an initial velocity producing an arbitrarily poor modulus of continuity of the flow map.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/24/9/013</identifier><language>eng</language><publisher>Bristol: Institute of Physics</publisher><subject>Construction ; Continuity ; Euler equations ; Exact sciences and technology ; Exponents ; Global analysis, analysis on manifolds ; Inverse problems ; Mathematical analysis ; Mathematical methods in physics ; Mathematics ; Nonlinearity ; Numerical analysis ; Numerical analysis in abstract spaces ; Numerical analysis. Scientific computation ; Other topics in mathematical methods in physics ; Partial differential equations ; Physics ; Planes ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Two dimensional</subject><ispartof>Nonlinearity, 2011-09, Vol.24 (9), p.2599-2637</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3</citedby><cites>FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24496282$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KELLIHER, James P</creatorcontrib><title>On the flow map for 2D Euler equations with unbounded vorticity</title><title>Nonlinearity</title><description>In part I, we construct a class of examples of initial velocities for which the unique solution to the Euler equations in the plane has an associated flow map that lies in no Holder space of positive exponent for any positive time. In part II, we explore inverse problems that arise in attempting to construct an example of an initial velocity producing an arbitrarily poor modulus of continuity of the flow map.</description><subject>Construction</subject><subject>Continuity</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Exponents</subject><subject>Global analysis, analysis on manifolds</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis in abstract spaces</subject><subject>Numerical analysis. Scientific computation</subject><subject>Other topics in mathematical methods in physics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Planes</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Two dimensional</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAYRS0EEqXwAkxekFhC_fkv8YRQKT9SpS4wW07yWQ1K49ZOqPr2pKLqdJdzz3AIuQf2BKwoZswoyPIc1IzLmZkxEBdkAkJDppWUl2RyBq7JTUo_jAEUXEzI86qj_Rqpb8OebtyW-hApf6WLocVIcTe4vgldovumX9OhK8PQ1VjT3xD7pmr6wy258q5NeHfaKfl-W3zNP7Ll6v1z_rLMKqFknyE3CFozKXRpUOWgAUoveC3KQtdMlU5grllRlbrOS194RDaOQuWM0c6LKXn8925j2A2YertpUoVt6zoMQ7KQC8akloqPKP9HqxhSiujtNjYbFw8WmD3WsscY9hjDcmmNHWuNp4eT36XKtT66rmrS-cmlNJqPxf4ADhFpKg</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>KELLIHER, James P</creator><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110901</creationdate><title>On the flow map for 2D Euler equations with unbounded vorticity</title><author>KELLIHER, James P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Construction</topic><topic>Continuity</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Exponents</topic><topic>Global analysis, analysis on manifolds</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis in abstract spaces</topic><topic>Numerical analysis. Scientific computation</topic><topic>Other topics in mathematical methods in physics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Planes</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KELLIHER, James P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KELLIHER, James P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the flow map for 2D Euler equations with unbounded vorticity</atitle><jtitle>Nonlinearity</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>24</volume><issue>9</issue><spage>2599</spage><epage>2637</epage><pages>2599-2637</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><abstract>In part I, we construct a class of examples of initial velocities for which the unique solution to the Euler equations in the plane has an associated flow map that lies in no Holder space of positive exponent for any positive time. In part II, we explore inverse problems that arise in attempting to construct an example of an initial velocity producing an arbitrarily poor modulus of continuity of the flow map.</abstract><cop>Bristol</cop><pub>Institute of Physics</pub><doi>10.1088/0951-7715/24/9/013</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2011-09, Vol.24 (9), p.2599-2637 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730046452 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Construction Continuity Euler equations Exact sciences and technology Exponents Global analysis, analysis on manifolds Inverse problems Mathematical analysis Mathematical methods in physics Mathematics Nonlinearity Numerical analysis Numerical analysis in abstract spaces Numerical analysis. Scientific computation Other topics in mathematical methods in physics Partial differential equations Physics Planes Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds Two dimensional |
title | On the flow map for 2D Euler equations with unbounded vorticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20flow%20map%20for%202D%20Euler%20equations%20with%20unbounded%20vorticity&rft.jtitle=Nonlinearity&rft.au=KELLIHER,%20James%20P&rft.date=2011-09-01&rft.volume=24&rft.issue=9&rft.spage=2599&rft.epage=2637&rft.pages=2599-2637&rft.issn=0951-7715&rft.eissn=1361-6544&rft_id=info:doi/10.1088/0951-7715/24/9/013&rft_dat=%3Cproquest_cross%3E1730046452%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-e29e1660436b9e571611bf32d3b86d05ba3e7608cb6d7bf8fee0bf85e5a996af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1730046452&rft_id=info:pmid/&rfr_iscdi=true |