Loading…
Generalized Interval Fuzzy Chance-Constrained Programming Method for Domestic Wastewater Management Under Uncertainty – A Case Study of Kunming, China
In this study, interval mathematical programming (IMP), m λ -measure, and fuzzy chance-constrained programming are incorporated into a general optimization framework, leading to a generalized interval fuzzy chance-constrained programming (GIFCP) method. GIFCP can be used to address not only interval...
Saved in:
Published in: | Water resources management 2015-07, Vol.29 (9), p.3015-3036 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, interval mathematical programming (IMP), m λ -measure, and fuzzy chance-constrained programming are incorporated into a general optimization framework, leading to a generalized interval fuzzy chance-constrained programming (GIFCP) method. GIFCP can be used to address not only interval uncertainties in the objective function, variables and left-hand side parameters but also fuzzy uncertainties on the right-hand side. Also, it can reflect the aspiration preference of optimistic and pessimistic decision makers due to the integration of m λ -measure. The developed method is applied to the long-term planning of a domestic wastewater management system in the city of Kunming, China, with consideration of the eco-environmental protection of downstream water body. The solution results of the GIFCP method can generate a series of optimal wastewater allocation patterns and WTPs capacity expansion schemes under different risk levels, provide in-depth insights into the effects of uncertainties, and consider the proper balance between system cost and risk of constraint violation. |
---|---|
ISSN: | 0920-4741 1573-1650 |
DOI: | 10.1007/s11269-014-0902-x |