Loading…

Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device

Cellular responses to chemical cues are at the core of a myriad of fundamental biological processes ranging from embryonic development to cancer metastasis. Most of these biological processes are also influenced by mechanical cues such as the stiffness of the extracellular matrix. How a biological f...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2015-01, Vol.15 (12), p.2606-2614
Main Authors: García, S, Sunyer, R, Olivares, A, Noailly, J, Atencia, J, Trepat, X
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-6ca6c101a071449fb8548b750a6ace27fce3b2e6823e8a7cb14f08351be44a973
cites cdi_FETCH-LOGICAL-c423t-6ca6c101a071449fb8548b750a6ace27fce3b2e6823e8a7cb14f08351be44a973
container_end_page 2614
container_issue 12
container_start_page 2606
container_title Lab on a chip
container_volume 15
creator García, S
Sunyer, R
Olivares, A
Noailly, J
Atencia, J
Trepat, X
description Cellular responses to chemical cues are at the core of a myriad of fundamental biological processes ranging from embryonic development to cancer metastasis. Most of these biological processes are also influenced by mechanical cues such as the stiffness of the extracellular matrix. How a biological function is influenced by a synergy between chemical concentration and extracellular matrix stiffness is largely unknown, however, because no current strategy enables the integration of both types of cues in a single experiment. Here we present a robust microfluidic device that generates a stable, linear and diffusive chemical gradient over a biocompatible hydrogel with a well-defined stiffness gradient. Device fabrication relies on patterned PSA (Pressure Sensitive Adhesive) stacks that can be implemented with minimal cost and lab equipment. This technique is suitable for long-term observation of cell migration and application of traction force microscopy. We validate our device by testing MDCK cell scattering in response to perpendicular gradients of hepatocyte growth factor (HGF) and substrate stiffness.
doi_str_mv 10.1039/c5lc00140d
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730060262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685748081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-6ca6c101a071449fb8548b750a6ace27fce3b2e6823e8a7cb14f08351be44a973</originalsourceid><addsrcrecordid>eNqFkTFPwzAQhS0EoqWw8ANQRoQUsGMndkYUoCBVYoE5sp1za5TaxU6Q-Pe4tHRlurt33z3p9BC6JPiWYFrf6bLXGBOGuyM0JYzTHBNRHx_6mk_QWYwfiSlZJU7RpChrzuuaT9EwBwdBDta7zJssDlL1kPkwrPzSO9lnyyA7C26I27VewdrqpGrvdBL3h9J1WRxV3M6QPKwxDmLMbFpl6SB404-2szrr4MtqOEcnRvYRLvZ1ht6fHt-a53zxOn9p7he5ZgUd8krLShNMJOaEsdooUTKheIllJTUU3GigqoBKFBSE5FoRZrCgJVHAmKw5naHrne8m-M8R4tCubdTQ99KBH2NLOMW4wkVV_I9WouRMYEESerND018xBjDtJti1DN8twe02kLYpF81vIA8Jvtr7jmoN3QH9S4D-AMGOh48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685748081</pqid></control><display><type>article</type><title>Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device</title><source>Royal Society of Chemistry Journals</source><creator>García, S ; Sunyer, R ; Olivares, A ; Noailly, J ; Atencia, J ; Trepat, X</creator><creatorcontrib>García, S ; Sunyer, R ; Olivares, A ; Noailly, J ; Atencia, J ; Trepat, X</creatorcontrib><description>Cellular responses to chemical cues are at the core of a myriad of fundamental biological processes ranging from embryonic development to cancer metastasis. Most of these biological processes are also influenced by mechanical cues such as the stiffness of the extracellular matrix. How a biological function is influenced by a synergy between chemical concentration and extracellular matrix stiffness is largely unknown, however, because no current strategy enables the integration of both types of cues in a single experiment. Here we present a robust microfluidic device that generates a stable, linear and diffusive chemical gradient over a biocompatible hydrogel with a well-defined stiffness gradient. Device fabrication relies on patterned PSA (Pressure Sensitive Adhesive) stacks that can be implemented with minimal cost and lab equipment. This technique is suitable for long-term observation of cell migration and application of traction force microscopy. We validate our device by testing MDCK cell scattering in response to perpendicular gradients of hepatocyte growth factor (HGF) and substrate stiffness.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c5lc00140d</identifier><identifier>PMID: 25977997</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Biological ; Cell Movement - drug effects ; Cellular ; Cost engineering ; Cues ; Devices ; Dogs ; Elasticity ; Equipment Design ; Hepatocyte Growth Factor - pharmacology ; Hydrogel, Polyethylene Glycol Dimethacrylate ; Madin Darby Canine Kidney Cells ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Microscopy ; Microscopy, Atomic Force ; Pressure ; Reproducibility of Results ; Stiffness</subject><ispartof>Lab on a chip, 2015-01, Vol.15 (12), p.2606-2614</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-6ca6c101a071449fb8548b750a6ace27fce3b2e6823e8a7cb14f08351be44a973</citedby><cites>FETCH-LOGICAL-c423t-6ca6c101a071449fb8548b750a6ace27fce3b2e6823e8a7cb14f08351be44a973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25977997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>García, S</creatorcontrib><creatorcontrib>Sunyer, R</creatorcontrib><creatorcontrib>Olivares, A</creatorcontrib><creatorcontrib>Noailly, J</creatorcontrib><creatorcontrib>Atencia, J</creatorcontrib><creatorcontrib>Trepat, X</creatorcontrib><title>Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Cellular responses to chemical cues are at the core of a myriad of fundamental biological processes ranging from embryonic development to cancer metastasis. Most of these biological processes are also influenced by mechanical cues such as the stiffness of the extracellular matrix. How a biological function is influenced by a synergy between chemical concentration and extracellular matrix stiffness is largely unknown, however, because no current strategy enables the integration of both types of cues in a single experiment. Here we present a robust microfluidic device that generates a stable, linear and diffusive chemical gradient over a biocompatible hydrogel with a well-defined stiffness gradient. Device fabrication relies on patterned PSA (Pressure Sensitive Adhesive) stacks that can be implemented with minimal cost and lab equipment. This technique is suitable for long-term observation of cell migration and application of traction force microscopy. We validate our device by testing MDCK cell scattering in response to perpendicular gradients of hepatocyte growth factor (HGF) and substrate stiffness.</description><subject>Animals</subject><subject>Biological</subject><subject>Cell Movement - drug effects</subject><subject>Cellular</subject><subject>Cost engineering</subject><subject>Cues</subject><subject>Devices</subject><subject>Dogs</subject><subject>Elasticity</subject><subject>Equipment Design</subject><subject>Hepatocyte Growth Factor - pharmacology</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Pressure</subject><subject>Reproducibility of Results</subject><subject>Stiffness</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkTFPwzAQhS0EoqWw8ANQRoQUsGMndkYUoCBVYoE5sp1za5TaxU6Q-Pe4tHRlurt33z3p9BC6JPiWYFrf6bLXGBOGuyM0JYzTHBNRHx_6mk_QWYwfiSlZJU7RpChrzuuaT9EwBwdBDta7zJssDlL1kPkwrPzSO9lnyyA7C26I27VewdrqpGrvdBL3h9J1WRxV3M6QPKwxDmLMbFpl6SB404-2szrr4MtqOEcnRvYRLvZ1ht6fHt-a53zxOn9p7he5ZgUd8krLShNMJOaEsdooUTKheIllJTUU3GigqoBKFBSE5FoRZrCgJVHAmKw5naHrne8m-M8R4tCubdTQ99KBH2NLOMW4wkVV_I9WouRMYEESerND018xBjDtJti1DN8twe02kLYpF81vIA8Jvtr7jmoN3QH9S4D-AMGOh48</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>García, S</creator><creator>Sunyer, R</creator><creator>Olivares, A</creator><creator>Noailly, J</creator><creator>Atencia, J</creator><creator>Trepat, X</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device</title><author>García, S ; Sunyer, R ; Olivares, A ; Noailly, J ; Atencia, J ; Trepat, X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-6ca6c101a071449fb8548b750a6ace27fce3b2e6823e8a7cb14f08351be44a973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biological</topic><topic>Cell Movement - drug effects</topic><topic>Cellular</topic><topic>Cost engineering</topic><topic>Cues</topic><topic>Devices</topic><topic>Dogs</topic><topic>Elasticity</topic><topic>Equipment Design</topic><topic>Hepatocyte Growth Factor - pharmacology</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Pressure</topic><topic>Reproducibility of Results</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García, S</creatorcontrib><creatorcontrib>Sunyer, R</creatorcontrib><creatorcontrib>Olivares, A</creatorcontrib><creatorcontrib>Noailly, J</creatorcontrib><creatorcontrib>Atencia, J</creatorcontrib><creatorcontrib>Trepat, X</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García, S</au><au>Sunyer, R</au><au>Olivares, A</au><au>Noailly, J</au><au>Atencia, J</au><au>Trepat, X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>15</volume><issue>12</issue><spage>2606</spage><epage>2614</epage><pages>2606-2614</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Cellular responses to chemical cues are at the core of a myriad of fundamental biological processes ranging from embryonic development to cancer metastasis. Most of these biological processes are also influenced by mechanical cues such as the stiffness of the extracellular matrix. How a biological function is influenced by a synergy between chemical concentration and extracellular matrix stiffness is largely unknown, however, because no current strategy enables the integration of both types of cues in a single experiment. Here we present a robust microfluidic device that generates a stable, linear and diffusive chemical gradient over a biocompatible hydrogel with a well-defined stiffness gradient. Device fabrication relies on patterned PSA (Pressure Sensitive Adhesive) stacks that can be implemented with minimal cost and lab equipment. This technique is suitable for long-term observation of cell migration and application of traction force microscopy. We validate our device by testing MDCK cell scattering in response to perpendicular gradients of hepatocyte growth factor (HGF) and substrate stiffness.</abstract><cop>England</cop><pmid>25977997</pmid><doi>10.1039/c5lc00140d</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2015-01, Vol.15 (12), p.2606-2614
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_1730060262
source Royal Society of Chemistry Journals
subjects Animals
Biological
Cell Movement - drug effects
Cellular
Cost engineering
Cues
Devices
Dogs
Elasticity
Equipment Design
Hepatocyte Growth Factor - pharmacology
Hydrogel, Polyethylene Glycol Dimethacrylate
Madin Darby Canine Kidney Cells
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Microfluidics
Microscopy
Microscopy, Atomic Force
Pressure
Reproducibility of Results
Stiffness
title Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20stable%20orthogonal%20gradients%20of%20chemical%20concentration%20and%20substrate%20stiffness%20in%20a%20microfluidic%20device&rft.jtitle=Lab%20on%20a%20chip&rft.au=Garc%C3%ADa,%20S&rft.date=2015-01-01&rft.volume=15&rft.issue=12&rft.spage=2606&rft.epage=2614&rft.pages=2606-2614&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c5lc00140d&rft_dat=%3Cproquest_cross%3E1685748081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-6ca6c101a071449fb8548b750a6ace27fce3b2e6823e8a7cb14f08351be44a973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685748081&rft_id=info:pmid/25977997&rfr_iscdi=true