Loading…

Experimental and numerical study of a self-centering prestressed concrete moment resisting frame connection with bolted web friction devices

SUMMARY The self‐centering prestressed concrete (SCPC) moment resisting frame (MRF) with web friction devices (WFDs) is a new type of structure that integrates advantages of post‐tensioned precast concrete MRFs and self‐centering steel MRFs. In this paper, the configuration of the connection and des...

Full description

Saved in:
Bibliographic Details
Published in:Earthquake engineering & structural dynamics 2014-04, Vol.43 (4), p.529-545
Main Authors: Song, Liang-long, Guo, Tong, Chen, Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SUMMARY The self‐centering prestressed concrete (SCPC) moment resisting frame (MRF) with web friction devices (WFDs) is a new type of structure that integrates advantages of post‐tensioned precast concrete MRFs and self‐centering steel MRFs. In this paper, the configuration of the connection and design guidelines are presented. To further reduce damage to the connection under cyclic loading and facilitate implementation in practice, several significant improvements are proposed and experimentally validated in this study, including the following: (i) the welded connection is replaced by the bolted connection; (ii) aluminum plates are used for friction instead of brass plates to reduce the material costs without decreasing the energy dissipation capacity; and (iii) post‐tensioned tendons at the corners of the beam are replaced by a bundle of tendons at the beam centroid in order to facilitate the field assembly. The resulting improvements of seismic performances are experimentally demonstrated by 10 cyclic tests of two full‐scale SCPC beam–column connections. Numerical simulation of the proposed connection is conducted using the Open System for Earthquake Engineering Simulation (OpenSees) to replicate the experimental results. Seismic behaviors are taken into account, such as the gap opening/closing at the beam–column interface, the self‐centering capacity, and the friction energy dissipation. Good agreement is observed between the numerical simulation and the test results. The proposed SCPC connection with bolted WFDs is demonstrated to have good performance when subjected to cyclic loading. Copyright © 2013 John Wiley & Sons, Ltd.
ISSN:0098-8847
1096-9845
DOI:10.1002/eqe.2358