Loading…

Differentiability of fractal curves

A self-similar set that spans [dbl-struck R] super(n) can have no tangent hyperplane at any single point. There are lots of smooth self-affine curves, however. We consider plane self-affine curves without double points and with two pieces. There is an open subset of parameter space for which the cur...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinearity 2011-10, Vol.24 (10), p.2717-2728
Main Authors: BANDT, Christoph, KRAVCHENKO, Aleksey
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-4553b2868990fb7e8fffa45b4e334fc302d33de4b4d9b42257aa61b6eb5275493
cites cdi_FETCH-LOGICAL-c357t-4553b2868990fb7e8fffa45b4e334fc302d33de4b4d9b42257aa61b6eb5275493
container_end_page 2728
container_issue 10
container_start_page 2717
container_title Nonlinearity
container_volume 24
creator BANDT, Christoph
KRAVCHENKO, Aleksey
description A self-similar set that spans [dbl-struck R] super(n) can have no tangent hyperplane at any single point. There are lots of smooth self-affine curves, however. We consider plane self-affine curves without double points and with two pieces. There is an open subset of parameter space for which the curve is differentiable at all points except for a countable set. For a parameter set of codimension one, the curve is continuously differentiable. However, there are no twice differentiable self-affine curves in the plane, except for line segments and parabolic arcs.
doi_str_mv 10.1088/0951-7715/24/10/003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730066208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730066208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-4553b2868990fb7e8fffa45b4e334fc302d33de4b4d9b42257aa61b6eb5275493</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKu_wEtBBC_rTjL52qPUTyh40XNI0gQi225NdoX-e3dp6WlgeN4ZnpeQWwqPFLSuoRG0UoqKmvGaQg2AZ2RGUdJKCs7PyexEXJKrUn4AKNUMZ-TuOcUYctj2ybrUpn6_6OIiZut72y78kP9CuSYX0bYl3BznnHy_vnwt36vV59vH8mlVeRSqr7gQ6JiWumkgOhV0jNFy4XhA5NEjsDXiOnDH143jjAllraROBieYErzBOXk43N3l7ncIpTebVHxoW7sN3VAMVQggJQM9onhAfe5KySGaXU4bm_eGgpkqMZOwmYQN49NyrGRM3R8f2OJtO1pufSqnKONypGiD_xbHXyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730066208</pqid></control><display><type>article</type><title>Differentiability of fractal curves</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>BANDT, Christoph ; KRAVCHENKO, Aleksey</creator><creatorcontrib>BANDT, Christoph ; KRAVCHENKO, Aleksey</creatorcontrib><description>A self-similar set that spans [dbl-struck R] super(n) can have no tangent hyperplane at any single point. There are lots of smooth self-affine curves, however. We consider plane self-affine curves without double points and with two pieces. There is an open subset of parameter space for which the curve is differentiable at all points except for a countable set. For a parameter set of codimension one, the curve is continuously differentiable. However, there are no twice differentiable self-affine curves in the plane, except for line segments and parabolic arcs.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/24/10/003</identifier><language>eng</language><publisher>Bristol: Institute of Physics</publisher><subject>Exact sciences and technology ; Fractal analysis ; Fractals ; Global analysis, analysis on manifolds ; Hyperplanes ; Mathematical analysis ; Mathematical methods in physics ; Mathematics ; Measure and integration ; Nonlinearity ; Other topics in mathematical methods in physics ; Physics ; Planes ; Sciences and techniques of general use ; Segments ; Self-similarity ; Tangents ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinearity, 2011-10, Vol.24 (10), p.2717-2728</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-4553b2868990fb7e8fffa45b4e334fc302d33de4b4d9b42257aa61b6eb5275493</citedby><cites>FETCH-LOGICAL-c357t-4553b2868990fb7e8fffa45b4e334fc302d33de4b4d9b42257aa61b6eb5275493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24600319$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BANDT, Christoph</creatorcontrib><creatorcontrib>KRAVCHENKO, Aleksey</creatorcontrib><title>Differentiability of fractal curves</title><title>Nonlinearity</title><description>A self-similar set that spans [dbl-struck R] super(n) can have no tangent hyperplane at any single point. There are lots of smooth self-affine curves, however. We consider plane self-affine curves without double points and with two pieces. There is an open subset of parameter space for which the curve is differentiable at all points except for a countable set. For a parameter set of codimension one, the curve is continuously differentiable. However, there are no twice differentiable self-affine curves in the plane, except for line segments and parabolic arcs.</description><subject>Exact sciences and technology</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Global analysis, analysis on manifolds</subject><subject>Hyperplanes</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Measure and integration</subject><subject>Nonlinearity</subject><subject>Other topics in mathematical methods in physics</subject><subject>Physics</subject><subject>Planes</subject><subject>Sciences and techniques of general use</subject><subject>Segments</subject><subject>Self-similarity</subject><subject>Tangents</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKu_wEtBBC_rTjL52qPUTyh40XNI0gQi225NdoX-e3dp6WlgeN4ZnpeQWwqPFLSuoRG0UoqKmvGaQg2AZ2RGUdJKCs7PyexEXJKrUn4AKNUMZ-TuOcUYctj2ybrUpn6_6OIiZut72y78kP9CuSYX0bYl3BznnHy_vnwt36vV59vH8mlVeRSqr7gQ6JiWumkgOhV0jNFy4XhA5NEjsDXiOnDH143jjAllraROBieYErzBOXk43N3l7ncIpTebVHxoW7sN3VAMVQggJQM9onhAfe5KySGaXU4bm_eGgpkqMZOwmYQN49NyrGRM3R8f2OJtO1pufSqnKONypGiD_xbHXyQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>BANDT, Christoph</creator><creator>KRAVCHENKO, Aleksey</creator><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111001</creationdate><title>Differentiability of fractal curves</title><author>BANDT, Christoph ; KRAVCHENKO, Aleksey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-4553b2868990fb7e8fffa45b4e334fc302d33de4b4d9b42257aa61b6eb5275493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Exact sciences and technology</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Global analysis, analysis on manifolds</topic><topic>Hyperplanes</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Measure and integration</topic><topic>Nonlinearity</topic><topic>Other topics in mathematical methods in physics</topic><topic>Physics</topic><topic>Planes</topic><topic>Sciences and techniques of general use</topic><topic>Segments</topic><topic>Self-similarity</topic><topic>Tangents</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BANDT, Christoph</creatorcontrib><creatorcontrib>KRAVCHENKO, Aleksey</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BANDT, Christoph</au><au>KRAVCHENKO, Aleksey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiability of fractal curves</atitle><jtitle>Nonlinearity</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>24</volume><issue>10</issue><spage>2717</spage><epage>2728</epage><pages>2717-2728</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><abstract>A self-similar set that spans [dbl-struck R] super(n) can have no tangent hyperplane at any single point. There are lots of smooth self-affine curves, however. We consider plane self-affine curves without double points and with two pieces. There is an open subset of parameter space for which the curve is differentiable at all points except for a countable set. For a parameter set of codimension one, the curve is continuously differentiable. However, there are no twice differentiable self-affine curves in the plane, except for line segments and parabolic arcs.</abstract><cop>Bristol</cop><pub>Institute of Physics</pub><doi>10.1088/0951-7715/24/10/003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2011-10, Vol.24 (10), p.2717-2728
issn 0951-7715
1361-6544
language eng
recordid cdi_proquest_miscellaneous_1730066208
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Exact sciences and technology
Fractal analysis
Fractals
Global analysis, analysis on manifolds
Hyperplanes
Mathematical analysis
Mathematical methods in physics
Mathematics
Measure and integration
Nonlinearity
Other topics in mathematical methods in physics
Physics
Planes
Sciences and techniques of general use
Segments
Self-similarity
Tangents
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Differentiability of fractal curves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiability%20of%20fractal%20curves&rft.jtitle=Nonlinearity&rft.au=BANDT,%20Christoph&rft.date=2011-10-01&rft.volume=24&rft.issue=10&rft.spage=2717&rft.epage=2728&rft.pages=2717-2728&rft.issn=0951-7715&rft.eissn=1361-6544&rft_id=info:doi/10.1088/0951-7715/24/10/003&rft_dat=%3Cproquest_cross%3E1730066208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-4553b2868990fb7e8fffa45b4e334fc302d33de4b4d9b42257aa61b6eb5275493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1730066208&rft_id=info:pmid/&rfr_iscdi=true