Loading…

An augmented Lagrangian method for distributed optimization

We propose a novel distributed method for convex optimization problems with a certain separability structure. The method is based on the augmented Lagrangian framework. We analyze its convergence and provide an application to two network models, as well as to a two-stage stochastic optimization prob...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming 2015-08, Vol.152 (1-2), p.405-434
Main Authors: Chatzipanagiotis, Nikolaos, Dentcheva, Darinka, Zavlanos, Michael M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-ce60107b623db9f52c8b47b741c0326d4f99dc1b2ef50a508c7053a9c571f6ed3
cites cdi_FETCH-LOGICAL-c349t-ce60107b623db9f52c8b47b741c0326d4f99dc1b2ef50a508c7053a9c571f6ed3
container_end_page 434
container_issue 1-2
container_start_page 405
container_title Mathematical programming
container_volume 152
creator Chatzipanagiotis, Nikolaos
Dentcheva, Darinka
Zavlanos, Michael M.
description We propose a novel distributed method for convex optimization problems with a certain separability structure. The method is based on the augmented Lagrangian framework. We analyze its convergence and provide an application to two network models, as well as to a two-stage stochastic optimization problem. The proposed method compares favorably to two augmented Lagrangian decomposition methods known in the literature, as well as to decomposition methods based on the ordinary Lagrangian function.
doi_str_mv 10.1007/s10107-014-0808-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730069050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730069050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ce60107b623db9f52c8b47b741c0326d4f99dc1b2ef50a508c7053a9c571f6ed3</originalsourceid><addsrcrecordid>eNp1kEtLxDAYRYMoOI7-AHcFN26iX5pXg6th8AUDbnQd0jStGabJmLQL_fW2jAsRXN3NuZfLQeiSwA0BkLeZAAGJgTAMFVRYHqEFYVRgJpg4RguAkmMuCJyis5y3AEBoVS3Q3SoUZux6FwbXFBvTJRM6b0LRu-E9NkUbU9H4PCRfjzMR94Pv_ZcZfAzn6KQ1u-wufnKJ3h7uX9dPePPy-LxebbClTA3YOjF_q0VJm1q1vLRVzWQtGbFAS9GwVqnGkrp0LQfDobISODXKckla4Rq6RNeH3X2KH6PLg-59tm63M8HFMWsiKYBQwGFCr_6g2zimML3TRChBmJJQThQ5UDbFnJNr9T753qRPTUDPOvVBp5506lmnllOnPHTyxIbOpV_L_5a-AcsqdoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696149702</pqid></control><display><type>article</type><title>An augmented Lagrangian method for distributed optimization</title><source>Business Source Ultimate</source><source>ABI/INFORM global</source><source>Springer Link</source><creator>Chatzipanagiotis, Nikolaos ; Dentcheva, Darinka ; Zavlanos, Michael M.</creator><creatorcontrib>Chatzipanagiotis, Nikolaos ; Dentcheva, Darinka ; Zavlanos, Michael M.</creatorcontrib><description>We propose a novel distributed method for convex optimization problems with a certain separability structure. The method is based on the augmented Lagrangian framework. We analyze its convergence and provide an application to two network models, as well as to a two-stage stochastic optimization problem. The proposed method compares favorably to two augmented Lagrangian decomposition methods known in the literature, as well as to decomposition methods based on the ordinary Lagrangian function.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-014-0808-7</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Convergence ; Convex analysis ; Decomposition ; Full Length Paper ; Lagrange multiplier ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical models ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Methods ; Network management systems ; Networks ; Numerical Analysis ; Optimization ; Stochasticity ; Studies ; Theoretical</subject><ispartof>Mathematical programming, 2015-08, Vol.152 (1-2), p.405-434</ispartof><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014</rights><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ce60107b623db9f52c8b47b741c0326d4f99dc1b2ef50a508c7053a9c571f6ed3</citedby><cites>FETCH-LOGICAL-c349t-ce60107b623db9f52c8b47b741c0326d4f99dc1b2ef50a508c7053a9c571f6ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1696149702?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339</link.rule.ids></links><search><creatorcontrib>Chatzipanagiotis, Nikolaos</creatorcontrib><creatorcontrib>Dentcheva, Darinka</creatorcontrib><creatorcontrib>Zavlanos, Michael M.</creatorcontrib><title>An augmented Lagrangian method for distributed optimization</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>We propose a novel distributed method for convex optimization problems with a certain separability structure. The method is based on the augmented Lagrangian framework. We analyze its convergence and provide an application to two network models, as well as to a two-stage stochastic optimization problem. The proposed method compares favorably to two augmented Lagrangian decomposition methods known in the literature, as well as to decomposition methods based on the ordinary Lagrangian function.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Convergence</subject><subject>Convex analysis</subject><subject>Decomposition</subject><subject>Full Length Paper</subject><subject>Lagrange multiplier</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Methods</subject><subject>Network management systems</subject><subject>Networks</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLxDAYRYMoOI7-AHcFN26iX5pXg6th8AUDbnQd0jStGabJmLQL_fW2jAsRXN3NuZfLQeiSwA0BkLeZAAGJgTAMFVRYHqEFYVRgJpg4RguAkmMuCJyis5y3AEBoVS3Q3SoUZux6FwbXFBvTJRM6b0LRu-E9NkUbU9H4PCRfjzMR94Pv_ZcZfAzn6KQ1u-wufnKJ3h7uX9dPePPy-LxebbClTA3YOjF_q0VJm1q1vLRVzWQtGbFAS9GwVqnGkrp0LQfDobISODXKckla4Rq6RNeH3X2KH6PLg-59tm63M8HFMWsiKYBQwGFCr_6g2zimML3TRChBmJJQThQ5UDbFnJNr9T753qRPTUDPOvVBp5506lmnllOnPHTyxIbOpV_L_5a-AcsqdoU</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Chatzipanagiotis, Nikolaos</creator><creator>Dentcheva, Darinka</creator><creator>Zavlanos, Michael M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150801</creationdate><title>An augmented Lagrangian method for distributed optimization</title><author>Chatzipanagiotis, Nikolaos ; Dentcheva, Darinka ; Zavlanos, Michael M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ce60107b623db9f52c8b47b741c0326d4f99dc1b2ef50a508c7053a9c571f6ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Convergence</topic><topic>Convex analysis</topic><topic>Decomposition</topic><topic>Full Length Paper</topic><topic>Lagrange multiplier</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Methods</topic><topic>Network management systems</topic><topic>Networks</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatzipanagiotis, Nikolaos</creatorcontrib><creatorcontrib>Dentcheva, Darinka</creatorcontrib><creatorcontrib>Zavlanos, Michael M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatzipanagiotis, Nikolaos</au><au>Dentcheva, Darinka</au><au>Zavlanos, Michael M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An augmented Lagrangian method for distributed optimization</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>152</volume><issue>1-2</issue><spage>405</spage><epage>434</epage><pages>405-434</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>We propose a novel distributed method for convex optimization problems with a certain separability structure. The method is based on the augmented Lagrangian framework. We analyze its convergence and provide an application to two network models, as well as to a two-stage stochastic optimization problem. The proposed method compares favorably to two augmented Lagrangian decomposition methods known in the literature, as well as to decomposition methods based on the ordinary Lagrangian function.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-014-0808-7</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2015-08, Vol.152 (1-2), p.405-434
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_miscellaneous_1730069050
source Business Source Ultimate; ABI/INFORM global; Springer Link
subjects Algorithms
Approximation
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Convergence
Convex analysis
Decomposition
Full Length Paper
Lagrange multiplier
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Methods
Network management systems
Networks
Numerical Analysis
Optimization
Stochasticity
Studies
Theoretical
title An augmented Lagrangian method for distributed optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20augmented%20Lagrangian%20method%20for%20distributed%20optimization&rft.jtitle=Mathematical%20programming&rft.au=Chatzipanagiotis,%20Nikolaos&rft.date=2015-08-01&rft.volume=152&rft.issue=1-2&rft.spage=405&rft.epage=434&rft.pages=405-434&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-014-0808-7&rft_dat=%3Cproquest_cross%3E1730069050%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-ce60107b623db9f52c8b47b741c0326d4f99dc1b2ef50a508c7053a9c571f6ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1696149702&rft_id=info:pmid/&rfr_iscdi=true