Loading…

Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode

SUMMARY A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynam...

Full description

Saved in:
Bibliographic Details
Published in:Earthquake engineering & structural dynamics 2013-04, Vol.42 (5), p.687-703
Main Authors: Chae, Yunbyeong, Ricles, James M., Sause, Richard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913
cites cdi_FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913
container_end_page 703
container_issue 5
container_start_page 687
container_title Earthquake engineering & structural dynamics
container_volume 42
creator Chae, Yunbyeong
Ricles, James M.
Sause, Richard
description SUMMARY A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynamics of an MR damper including the eddy current effect and the nonlinear hysteretic behavior of damper material magnetization. A nonlinear differential equation that relates the input current to the damper with a constant equivalent current is proposed. The nonlinear differential equation is combined with the Maxwell Nonlinear Slider (MNS) model to create the variable current MNS model to predict the damper force under variable input current and random damper displacement loading. The model is evaluated by comparing the predicted response of a large‐scale MR damper to the measured damper response from experiments. The experiments include a real‐time hybrid simulation of a 3‐story building structure with a large‐scale MR damper subjected to the design earthquake. The exceptional agreement observed between the predicted and experimental results illustrate the robustness and the accuracy of the variable current MNS model. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/eqe.2236
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730072352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439727716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913</originalsourceid><addsrcrecordid>eNqF0VFrFDEQwPFFFDyr4EcIiODLXifJ7ibrm5Szd1C1akHwJcxlJ9fU3c012VPrp2-OHvcgiE-B8OM_JFMULznMOYA4pVuaCyGbR8WMQ9uUra7qx8UMoNWl1pV6WjxL6QYAZANqVgwfQke9HzcsOIasx7ihMlnsiQ24GWkKZbym0IeNz5esw2FLkbkQWSKfBm_ZNf7B2LHBT36Dkw_jnF1inNhq9ZZ9pcGXaCf_M-fyoOfFE4d9oheH86S4er-4OluWF5_OV2fvLkpbtbIpnRNcOIdSOutAAJLlIOxaIaJzoIFUZxuo1JpXWnGu1jVq2QmlaqdbLk-KNw_ZbQy3O0qTGXyy1Pc4Utglw5UEUELW4v-0kq3KYd5k-uovehN2cczvMFxyXVdaZ30M2hhSiuTMNvoB453hYPYbMnlDZr-hTF8fgrj_cRdxtD4dvVC84kLq7MoH98v3dPfPnll8Xhy6B-_TRL-PHuMP0yipavPt47lZqu-8XupL80XeAztOrIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318548814</pqid></control><display><type>article</type><title>Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chae, Yunbyeong ; Ricles, James M. ; Sause, Richard</creator><creatorcontrib>Chae, Yunbyeong ; Ricles, James M. ; Sause, Richard</creatorcontrib><description>SUMMARY A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynamics of an MR damper including the eddy current effect and the nonlinear hysteretic behavior of damper material magnetization. A nonlinear differential equation that relates the input current to the damper with a constant equivalent current is proposed. The nonlinear differential equation is combined with the Maxwell Nonlinear Slider (MNS) model to create the variable current MNS model to predict the damper force under variable input current and random damper displacement loading. The model is evaluated by comparing the predicted response of a large‐scale MR damper to the measured damper response from experiments. The experiments include a real‐time hybrid simulation of a 3‐story building structure with a large‐scale MR damper subjected to the design earthquake. The exceptional agreement observed between the predicted and experimental results illustrate the robustness and the accuracy of the variable current MNS model. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0098-8847</identifier><identifier>EISSN: 1096-9845</identifier><identifier>DOI: 10.1002/eqe.2236</identifier><identifier>CODEN: IJEEBG</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Dampers ; Differential equations ; Earth sciences ; Earth, ocean, space ; Earthquakes, seismology ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Hysteresis ; Internal geophysics ; magneto-rheological damper ; Marine ; Mathematical models ; non-Newtonian fluid ; Nonlinear dynamics ; Nonlinearity ; Reproduction ; seismic hazard mitigation ; Seismic phenomena ; semi-active control ; supplemental damping system</subject><ispartof>Earthquake engineering &amp; structural dynamics, 2013-04, Vol.42 (5), p.687-703</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913</citedby><cites>FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27141238$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chae, Yunbyeong</creatorcontrib><creatorcontrib>Ricles, James M.</creatorcontrib><creatorcontrib>Sause, Richard</creatorcontrib><title>Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode</title><title>Earthquake engineering &amp; structural dynamics</title><addtitle>Earthquake Engng Struct. Dyn</addtitle><description>SUMMARY A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynamics of an MR damper including the eddy current effect and the nonlinear hysteretic behavior of damper material magnetization. A nonlinear differential equation that relates the input current to the damper with a constant equivalent current is proposed. The nonlinear differential equation is combined with the Maxwell Nonlinear Slider (MNS) model to create the variable current MNS model to predict the damper force under variable input current and random damper displacement loading. The model is evaluated by comparing the predicted response of a large‐scale MR damper to the measured damper response from experiments. The experiments include a real‐time hybrid simulation of a 3‐story building structure with a large‐scale MR damper subjected to the design earthquake. The exceptional agreement observed between the predicted and experimental results illustrate the robustness and the accuracy of the variable current MNS model. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>Dampers</subject><subject>Differential equations</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes, seismology</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Hysteresis</subject><subject>Internal geophysics</subject><subject>magneto-rheological damper</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>non-Newtonian fluid</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Reproduction</subject><subject>seismic hazard mitigation</subject><subject>Seismic phenomena</subject><subject>semi-active control</subject><subject>supplemental damping system</subject><issn>0098-8847</issn><issn>1096-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0VFrFDEQwPFFFDyr4EcIiODLXifJ7ibrm5Szd1C1akHwJcxlJ9fU3c012VPrp2-OHvcgiE-B8OM_JFMULznMOYA4pVuaCyGbR8WMQ9uUra7qx8UMoNWl1pV6WjxL6QYAZANqVgwfQke9HzcsOIasx7ihMlnsiQ24GWkKZbym0IeNz5esw2FLkbkQWSKfBm_ZNf7B2LHBT36Dkw_jnF1inNhq9ZZ9pcGXaCf_M-fyoOfFE4d9oheH86S4er-4OluWF5_OV2fvLkpbtbIpnRNcOIdSOutAAJLlIOxaIaJzoIFUZxuo1JpXWnGu1jVq2QmlaqdbLk-KNw_ZbQy3O0qTGXyy1Pc4Utglw5UEUELW4v-0kq3KYd5k-uovehN2cczvMFxyXVdaZ30M2hhSiuTMNvoB453hYPYbMnlDZr-hTF8fgrj_cRdxtD4dvVC84kLq7MoH98v3dPfPnll8Xhy6B-_TRL-PHuMP0yipavPt47lZqu-8XupL80XeAztOrIg</recordid><startdate>20130425</startdate><enddate>20130425</enddate><creator>Chae, Yunbyeong</creator><creator>Ricles, James M.</creator><creator>Sause, Richard</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>7SM</scope><scope>7SU</scope></search><sort><creationdate>20130425</creationdate><title>Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode</title><author>Chae, Yunbyeong ; Ricles, James M. ; Sause, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dampers</topic><topic>Differential equations</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes, seismology</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Hysteresis</topic><topic>Internal geophysics</topic><topic>magneto-rheological damper</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>non-Newtonian fluid</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Reproduction</topic><topic>seismic hazard mitigation</topic><topic>Seismic phenomena</topic><topic>semi-active control</topic><topic>supplemental damping system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chae, Yunbyeong</creatorcontrib><creatorcontrib>Ricles, James M.</creatorcontrib><creatorcontrib>Sause, Richard</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Earthquake engineering &amp; structural dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Yunbyeong</au><au>Ricles, James M.</au><au>Sause, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode</atitle><jtitle>Earthquake engineering &amp; structural dynamics</jtitle><addtitle>Earthquake Engng Struct. Dyn</addtitle><date>2013-04-25</date><risdate>2013</risdate><volume>42</volume><issue>5</issue><spage>687</spage><epage>703</epage><pages>687-703</pages><issn>0098-8847</issn><eissn>1096-9845</eissn><coden>IJEEBG</coden><abstract>SUMMARY A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynamics of an MR damper including the eddy current effect and the nonlinear hysteretic behavior of damper material magnetization. A nonlinear differential equation that relates the input current to the damper with a constant equivalent current is proposed. The nonlinear differential equation is combined with the Maxwell Nonlinear Slider (MNS) model to create the variable current MNS model to predict the damper force under variable input current and random damper displacement loading. The model is evaluated by comparing the predicted response of a large‐scale MR damper to the measured damper response from experiments. The experiments include a real‐time hybrid simulation of a 3‐story building structure with a large‐scale MR damper subjected to the design earthquake. The exceptional agreement observed between the predicted and experimental results illustrate the robustness and the accuracy of the variable current MNS model. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/eqe.2236</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-8847
ispartof Earthquake engineering & structural dynamics, 2013-04, Vol.42 (5), p.687-703
issn 0098-8847
1096-9845
language eng
recordid cdi_proquest_miscellaneous_1730072352
source Wiley-Blackwell Read & Publish Collection
subjects Dampers
Differential equations
Earth sciences
Earth, ocean, space
Earthquakes, seismology
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Hysteresis
Internal geophysics
magneto-rheological damper
Marine
Mathematical models
non-Newtonian fluid
Nonlinear dynamics
Nonlinearity
Reproduction
seismic hazard mitigation
Seismic phenomena
semi-active control
supplemental damping system
title Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20a%20large-scale%20magneto-rheological%20damper%20for%20seismic%20hazard%20mitigation.%20Part%20II:%20Semi-active%20mode&rft.jtitle=Earthquake%20engineering%20&%20structural%20dynamics&rft.au=Chae,%20Yunbyeong&rft.date=2013-04-25&rft.volume=42&rft.issue=5&rft.spage=687&rft.epage=703&rft.pages=687-703&rft.issn=0098-8847&rft.eissn=1096-9845&rft.coden=IJEEBG&rft_id=info:doi/10.1002/eqe.2236&rft_dat=%3Cproquest_cross%3E1439727716%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1318548814&rft_id=info:pmid/&rfr_iscdi=true