Loading…
Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode
SUMMARY A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynam...
Saved in:
Published in: | Earthquake engineering & structural dynamics 2013-04, Vol.42 (5), p.687-703 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913 |
---|---|
cites | cdi_FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913 |
container_end_page | 703 |
container_issue | 5 |
container_start_page | 687 |
container_title | Earthquake engineering & structural dynamics |
container_volume | 42 |
creator | Chae, Yunbyeong Ricles, James M. Sause, Richard |
description | SUMMARY
A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynamics of an MR damper including the eddy current effect and the nonlinear hysteretic behavior of damper material magnetization. A nonlinear differential equation that relates the input current to the damper with a constant equivalent current is proposed. The nonlinear differential equation is combined with the Maxwell Nonlinear Slider (MNS) model to create the variable current MNS model to predict the damper force under variable input current and random damper displacement loading. The model is evaluated by comparing the predicted response of a large‐scale MR damper to the measured damper response from experiments. The experiments include a real‐time hybrid simulation of a 3‐story building structure with a large‐scale MR damper subjected to the design earthquake. The exceptional agreement observed between the predicted and experimental results illustrate the robustness and the accuracy of the variable current MNS model. Copyright © 2012 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/eqe.2236 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730072352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439727716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913</originalsourceid><addsrcrecordid>eNqF0VFrFDEQwPFFFDyr4EcIiODLXifJ7ibrm5Szd1C1akHwJcxlJ9fU3c012VPrp2-OHvcgiE-B8OM_JFMULznMOYA4pVuaCyGbR8WMQ9uUra7qx8UMoNWl1pV6WjxL6QYAZANqVgwfQke9HzcsOIasx7ihMlnsiQ24GWkKZbym0IeNz5esw2FLkbkQWSKfBm_ZNf7B2LHBT36Dkw_jnF1inNhq9ZZ9pcGXaCf_M-fyoOfFE4d9oheH86S4er-4OluWF5_OV2fvLkpbtbIpnRNcOIdSOutAAJLlIOxaIaJzoIFUZxuo1JpXWnGu1jVq2QmlaqdbLk-KNw_ZbQy3O0qTGXyy1Pc4Utglw5UEUELW4v-0kq3KYd5k-uovehN2cczvMFxyXVdaZ30M2hhSiuTMNvoB453hYPYbMnlDZr-hTF8fgrj_cRdxtD4dvVC84kLq7MoH98v3dPfPnll8Xhy6B-_TRL-PHuMP0yipavPt47lZqu-8XupL80XeAztOrIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318548814</pqid></control><display><type>article</type><title>Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Chae, Yunbyeong ; Ricles, James M. ; Sause, Richard</creator><creatorcontrib>Chae, Yunbyeong ; Ricles, James M. ; Sause, Richard</creatorcontrib><description>SUMMARY
A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynamics of an MR damper including the eddy current effect and the nonlinear hysteretic behavior of damper material magnetization. A nonlinear differential equation that relates the input current to the damper with a constant equivalent current is proposed. The nonlinear differential equation is combined with the Maxwell Nonlinear Slider (MNS) model to create the variable current MNS model to predict the damper force under variable input current and random damper displacement loading. The model is evaluated by comparing the predicted response of a large‐scale MR damper to the measured damper response from experiments. The experiments include a real‐time hybrid simulation of a 3‐story building structure with a large‐scale MR damper subjected to the design earthquake. The exceptional agreement observed between the predicted and experimental results illustrate the robustness and the accuracy of the variable current MNS model. Copyright © 2012 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0098-8847</identifier><identifier>EISSN: 1096-9845</identifier><identifier>DOI: 10.1002/eqe.2236</identifier><identifier>CODEN: IJEEBG</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Dampers ; Differential equations ; Earth sciences ; Earth, ocean, space ; Earthquakes, seismology ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Hysteresis ; Internal geophysics ; magneto-rheological damper ; Marine ; Mathematical models ; non-Newtonian fluid ; Nonlinear dynamics ; Nonlinearity ; Reproduction ; seismic hazard mitigation ; Seismic phenomena ; semi-active control ; supplemental damping system</subject><ispartof>Earthquake engineering & structural dynamics, 2013-04, Vol.42 (5), p.687-703</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913</citedby><cites>FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27141238$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chae, Yunbyeong</creatorcontrib><creatorcontrib>Ricles, James M.</creatorcontrib><creatorcontrib>Sause, Richard</creatorcontrib><title>Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode</title><title>Earthquake engineering & structural dynamics</title><addtitle>Earthquake Engng Struct. Dyn</addtitle><description>SUMMARY
A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynamics of an MR damper including the eddy current effect and the nonlinear hysteretic behavior of damper material magnetization. A nonlinear differential equation that relates the input current to the damper with a constant equivalent current is proposed. The nonlinear differential equation is combined with the Maxwell Nonlinear Slider (MNS) model to create the variable current MNS model to predict the damper force under variable input current and random damper displacement loading. The model is evaluated by comparing the predicted response of a large‐scale MR damper to the measured damper response from experiments. The experiments include a real‐time hybrid simulation of a 3‐story building structure with a large‐scale MR damper subjected to the design earthquake. The exceptional agreement observed between the predicted and experimental results illustrate the robustness and the accuracy of the variable current MNS model. Copyright © 2012 John Wiley & Sons, Ltd.</description><subject>Dampers</subject><subject>Differential equations</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquakes, seismology</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Hysteresis</subject><subject>Internal geophysics</subject><subject>magneto-rheological damper</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>non-Newtonian fluid</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Reproduction</subject><subject>seismic hazard mitigation</subject><subject>Seismic phenomena</subject><subject>semi-active control</subject><subject>supplemental damping system</subject><issn>0098-8847</issn><issn>1096-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0VFrFDEQwPFFFDyr4EcIiODLXifJ7ibrm5Szd1C1akHwJcxlJ9fU3c012VPrp2-OHvcgiE-B8OM_JFMULznMOYA4pVuaCyGbR8WMQ9uUra7qx8UMoNWl1pV6WjxL6QYAZANqVgwfQke9HzcsOIasx7ihMlnsiQ24GWkKZbym0IeNz5esw2FLkbkQWSKfBm_ZNf7B2LHBT36Dkw_jnF1inNhq9ZZ9pcGXaCf_M-fyoOfFE4d9oheH86S4er-4OluWF5_OV2fvLkpbtbIpnRNcOIdSOutAAJLlIOxaIaJzoIFUZxuo1JpXWnGu1jVq2QmlaqdbLk-KNw_ZbQy3O0qTGXyy1Pc4Utglw5UEUELW4v-0kq3KYd5k-uovehN2cczvMFxyXVdaZ30M2hhSiuTMNvoB453hYPYbMnlDZr-hTF8fgrj_cRdxtD4dvVC84kLq7MoH98v3dPfPnll8Xhy6B-_TRL-PHuMP0yipavPt47lZqu-8XupL80XeAztOrIg</recordid><startdate>20130425</startdate><enddate>20130425</enddate><creator>Chae, Yunbyeong</creator><creator>Ricles, James M.</creator><creator>Sause, Richard</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>7SM</scope><scope>7SU</scope></search><sort><creationdate>20130425</creationdate><title>Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode</title><author>Chae, Yunbyeong ; Ricles, James M. ; Sause, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dampers</topic><topic>Differential equations</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquakes, seismology</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Hysteresis</topic><topic>Internal geophysics</topic><topic>magneto-rheological damper</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>non-Newtonian fluid</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Reproduction</topic><topic>seismic hazard mitigation</topic><topic>Seismic phenomena</topic><topic>semi-active control</topic><topic>supplemental damping system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chae, Yunbyeong</creatorcontrib><creatorcontrib>Ricles, James M.</creatorcontrib><creatorcontrib>Sause, Richard</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Earthquake engineering & structural dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Yunbyeong</au><au>Ricles, James M.</au><au>Sause, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode</atitle><jtitle>Earthquake engineering & structural dynamics</jtitle><addtitle>Earthquake Engng Struct. Dyn</addtitle><date>2013-04-25</date><risdate>2013</risdate><volume>42</volume><issue>5</issue><spage>687</spage><epage>703</epage><pages>687-703</pages><issn>0098-8847</issn><eissn>1096-9845</eissn><coden>IJEEBG</coden><abstract>SUMMARY
A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynamics of an MR damper including the eddy current effect and the nonlinear hysteretic behavior of damper material magnetization. A nonlinear differential equation that relates the input current to the damper with a constant equivalent current is proposed. The nonlinear differential equation is combined with the Maxwell Nonlinear Slider (MNS) model to create the variable current MNS model to predict the damper force under variable input current and random damper displacement loading. The model is evaluated by comparing the predicted response of a large‐scale MR damper to the measured damper response from experiments. The experiments include a real‐time hybrid simulation of a 3‐story building structure with a large‐scale MR damper subjected to the design earthquake. The exceptional agreement observed between the predicted and experimental results illustrate the robustness and the accuracy of the variable current MNS model. Copyright © 2012 John Wiley & Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/eqe.2236</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-8847 |
ispartof | Earthquake engineering & structural dynamics, 2013-04, Vol.42 (5), p.687-703 |
issn | 0098-8847 1096-9845 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730072352 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Dampers Differential equations Earth sciences Earth, ocean, space Earthquakes, seismology Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Hysteresis Internal geophysics magneto-rheological damper Marine Mathematical models non-Newtonian fluid Nonlinear dynamics Nonlinearity Reproduction seismic hazard mitigation Seismic phenomena semi-active control supplemental damping system |
title | Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: Semi-active mode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20a%20large-scale%20magneto-rheological%20damper%20for%20seismic%20hazard%20mitigation.%20Part%20II:%20Semi-active%20mode&rft.jtitle=Earthquake%20engineering%20&%20structural%20dynamics&rft.au=Chae,%20Yunbyeong&rft.date=2013-04-25&rft.volume=42&rft.issue=5&rft.spage=687&rft.epage=703&rft.pages=687-703&rft.issn=0098-8847&rft.eissn=1096-9845&rft.coden=IJEEBG&rft_id=info:doi/10.1002/eqe.2236&rft_dat=%3Cproquest_cross%3E1439727716%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4936-ff212ffa33fcf020aec102cb7aaaff080e7dc6047b1487117b5a83d2775f8913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1318548814&rft_id=info:pmid/&rfr_iscdi=true |