Loading…
Enhancing the catalytic efficiency of the Heck coupling reaction by forming 5 nm Pd octahedrons using kinetic control
Heterogeneous catalysis occurs through a process of interfacial reactions; therefore, both surface facet and size control can increase catalytic efficiency. Octahedral Pd nanocrystals, enclosed by {111} facets, should be the ideal geometrical shape for Heck coupling reactions; however, it is challen...
Saved in:
Published in: | Nano research 2015-06, Vol.8 (6), p.2115-2123 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Heterogeneous catalysis occurs through a process of interfacial reactions; therefore, both surface facet and size control can increase catalytic efficiency. Octahedral Pd nanocrystals, enclosed by {111} facets, should be the ideal geometrical shape for Heck coupling reactions; however, it is challenging to synthesize 5 nm Pd octahedrons with a relatively uniform size distribution using existing capping-agent techniques. Here, we used palladium as a model system to investigate how the kinetics of atomic addition could be precisely controlled using a syringe pump. As a result, our method produced Pd octahedrons as small as 5 nm, which increased the catalytic efficiency of Heck coupling reactions while reducing the weight of catalyst used. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-015-0722-1 |