Loading…

Investigation of carbonyl compound sources at a rural site in the Yangtze River Delta region of China

Carbonyl compounds are important intermediates in atmospheric photochemistry, but their primary sources are still not understood well. In this work, carbonyls, hydrocarbons, and alkyl nitrates were continuously measured during November 2011 at a rural site in the Yangtze River Delta region of China....

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental sciences (China) 2015-02, Vol.28, p.128-136
Main Authors: Wang, Ming, Chen, Wentai, Shao, Min, Lu, Sihua, Zeng, Limin, Hu, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbonyl compounds are important intermediates in atmospheric photochemistry, but their primary sources are still not understood well. In this work, carbonyls, hydrocarbons, and alkyl nitrates were continuously measured during November 2011 at a rural site in the Yangtze River Delta region of China. Mixing ratios of carbonyls and hydrocarbons showed large fluctuations during the entire measurement. The average level for total measured volatile organic compounds during the pollution episode from 25th to 27th November, 2011 was 91.6ppb, about 7 times the value for the clean period of 7th–8th, November, 2011. To preliminarily identify toluene sources at this site, the emission ratio of toluene to benzene (T/B) during the pollution episode was determined based on photochemical ages derived from the relationship of alkyl nitrates to their parent alkanes. The calculated T/B was 5.8ppb/ppb, significantly higher than the values of 0.2–1.7ppb/ppb for vehicular exhaust and other combustion sources, indicating the dominant influence of industrial emissions on ambient toluene. The contributions of industrial sources to ambient carbonyls were then calculated using a multiple linear regression fit model that used toluene and alkyl nitrates as respective tracers for industrial emission and secondary production. During the pollution episode, 18.5%, 69.0%, and 52.9% of measured formaldehyde, acetaldehyde, and acetone were considered to be attributable to industrial emissions. The emission ratios relative to toluene for formaldehyde, acetaldehyde, and acetone were determined to be 0.10, 0.20 and 0.40ppb/ppb, respectively. More research on industrial carbonyl emission characteristics is needed to understand carbonyl sources better.
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2014.12.001