Loading…

Performance Analysis of Multi-Wavelength Transmission Scanner for Polarized NIR Light

A system for small-object imaging, comprising a multiple-wavelength scanner for Near Infra-Red (NIR) light is under development in the Laboratory of Radiopharmaceuticals and Molecular Imaging (LRMI) at the National Laboratories of Legnaro, INFN, Italy. The System performs scanning of biological obje...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2012-01, Vol.398 (1), p.12039-6
Main Authors: Atroshchenko, K, Fontana, C L, De Rosa, M, Bello, M, Moschini, G, Uzunov, N M, Rossi, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A system for small-object imaging, comprising a multiple-wavelength scanner for Near Infra-Red (NIR) light is under development in the Laboratory of Radiopharmaceuticals and Molecular Imaging (LRMI) at the National Laboratories of Legnaro, INFN, Italy. The System performs scanning of biological objects using NIR light in the interval of 900nm − 1700nm. The scanned region is a rectangular with dimensions of 50mm × 80mm and is performed by consecutive positioning of InGaAs linear image sensor sliding close to the scanned object. The scanning is carried out in two different modes. The first mode is performed in transmitted linearly polarized NIR light using a set of five light emitting diodes with fixed wavelengths. The process of scanning is realized by a consecutive positioning of the NIR sensor and signal acquisition at the corresponding position. In the second scanning mode the fluorescence emission of nanoparticles such as single-walled carbon nanotubes (SWCNTs), administered in the imaged object, is excited by NIR lasers with different wavelengths. Spatial resolution of the system for transmitted linearly polarized NIR at five fixed wavelengths has been determined. Polarimetric measurements of some optically active sugars such as fructose and lactose were conducted at some fixed wavelengths in the range of 900–1200nm. The system sensitivity with respect to the concentrations of these agents has been estimated.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/398/1/012039