Loading…
QuEst for High Quality Machine Translation
In this paper we describe the use of QuEst, a framework that aims to obtain predictions on the quality of translations, to improve the performance of machine translation (MT) systems without changing their internal functioning. We apply QuEst to experiments with: i. multiple system translation ranki...
Saved in:
Published in: | Prague bulletin of mathematical linguistics 2015-04, Vol.103 (1), p.43-64 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3 |
container_end_page | 64 |
container_issue | 1 |
container_start_page | 43 |
container_title | Prague bulletin of mathematical linguistics |
container_volume | 103 |
creator | Biçici, Ergun Specia, Lucia |
description | In this paper we describe the use of QuEst, a framework that aims to obtain predictions on the quality of translations, to improve the performance of machine translation (MT) systems without changing their internal functioning. We apply QuEst to experiments with:
i. multiple system translation ranking, where translations produced by different MT systems are ranked according to their estimated quality, leading to gains of up to 2.72 BLEU, 3.66 BLEUs, and 2.17 F1 points;
ii. n-best list re-ranking, where n-best list translations produced by an MT system are reranked based on predicted quality scores to get the best translation ranked top, which lead to improvements on sentence NIST score by 0.41 points;
iii. n-best list combination, where segments from an n-best list are combined using a latticebased re-scoring approach that minimize word error, obtaining gains of 0.28 BLEU points; and
iv. the ITERPE strategy, which attempts to identify translation errors regardless of prediction errors (ITERPE) and build sentence-specific SMT systems (SSSS) on the ITERPE sorted instances identified as having more potential for improvement, achieving gains of up to 1.43 BLEU, 0.54 F1, 2.9 NIST, 0.64 sentence BLEU, and 4.7 sentence NIST points in English to German over the top 100 ITERPE sorted instances. |
doi_str_mv | 10.1515/pralin-2015-0003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730083195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3769739481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbvHgNeRIjO7Fc2F0FK_YCKFOp52Ww3bUqa1N0E6X_vlngogjDMvMPvPYZHyDXCPQoUDztv6qpJKaBIAYCdkBEq4ClwSU-P9Dm5CGEDIBWTOCJ3834auqRsffJardbJvI8x3T55N3ZdNS5ZeNOE2nRV21ySs9LUwV393jH5fJ4uJq_p7OPlbfI0Sy3lkqXOWWAZ2qIsUBUlFQYdpZmx6GTGRZ4LKQseF-cooMwhz0qZUaGKpWUGCzYmt0PuzrdfvQud3lbBuro2jWv7oDFjAIphLiJ68wfdtL1v4neRAlQKVMYiBQNlfRuCd6Xe-Wpr_F4j6EN5eihPH8rTh_Ki5XGwfJu6c37pVr7fR3GU_48V43DGfgDBfHUn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701880873</pqid></control><display><type>article</type><title>QuEst for High Quality Machine Translation</title><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Publicly Available Content (ProQuest)</source><source>Linguistics Collection</source><source>ProQuest One Literature</source><source>Linguistics and Language Behavior Abstracts (LLBA)</source><creator>Biçici, Ergun ; Specia, Lucia</creator><creatorcontrib>Biçici, Ergun ; Specia, Lucia</creatorcontrib><description>In this paper we describe the use of QuEst, a framework that aims to obtain predictions on the quality of translations, to improve the performance of machine translation (MT) systems without changing their internal functioning. We apply QuEst to experiments with:
i. multiple system translation ranking, where translations produced by different MT systems are ranked according to their estimated quality, leading to gains of up to 2.72 BLEU, 3.66 BLEUs, and 2.17 F1 points;
ii. n-best list re-ranking, where n-best list translations produced by an MT system are reranked based on predicted quality scores to get the best translation ranked top, which lead to improvements on sentence NIST score by 0.41 points;
iii. n-best list combination, where segments from an n-best list are combined using a latticebased re-scoring approach that minimize word error, obtaining gains of 0.28 BLEU points; and
iv. the ITERPE strategy, which attempts to identify translation errors regardless of prediction errors (ITERPE) and build sentence-specific SMT systems (SSSS) on the ITERPE sorted instances identified as having more potential for improvement, achieving gains of up to 1.43 BLEU, 0.54 F1, 2.9 NIST, 0.64 sentence BLEU, and 4.7 sentence NIST points in English to German over the top 100 ITERPE sorted instances.</description><identifier>ISSN: 1804-0462</identifier><identifier>ISSN: 0032-6585</identifier><identifier>EISSN: 1804-0462</identifier><identifier>DOI: 10.1515/pralin-2015-0003</identifier><language>eng</language><publisher>Prague: De Gruyter Open</publisher><subject>Construction ; Datasets ; English language ; Errors ; Experiments ; Gain ; German language ; Linguistics ; Lists ; Machine translation ; Performance enhancement ; Predictions ; Quality ; Ranking ; Sentences ; Strategy ; Translations</subject><ispartof>Prague bulletin of mathematical linguistics, 2015-04, Vol.103 (1), p.43-64</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3</citedby><cites>FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1701880873?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,12827,21358,21370,25728,27898,27899,31243,33585,33586,33885,33886,36986,36987,43706,43869,44563,62631,62632,62634,62647</link.rule.ids></links><search><creatorcontrib>Biçici, Ergun</creatorcontrib><creatorcontrib>Specia, Lucia</creatorcontrib><title>QuEst for High Quality Machine Translation</title><title>Prague bulletin of mathematical linguistics</title><description>In this paper we describe the use of QuEst, a framework that aims to obtain predictions on the quality of translations, to improve the performance of machine translation (MT) systems without changing their internal functioning. We apply QuEst to experiments with:
i. multiple system translation ranking, where translations produced by different MT systems are ranked according to their estimated quality, leading to gains of up to 2.72 BLEU, 3.66 BLEUs, and 2.17 F1 points;
ii. n-best list re-ranking, where n-best list translations produced by an MT system are reranked based on predicted quality scores to get the best translation ranked top, which lead to improvements on sentence NIST score by 0.41 points;
iii. n-best list combination, where segments from an n-best list are combined using a latticebased re-scoring approach that minimize word error, obtaining gains of 0.28 BLEU points; and
iv. the ITERPE strategy, which attempts to identify translation errors regardless of prediction errors (ITERPE) and build sentence-specific SMT systems (SSSS) on the ITERPE sorted instances identified as having more potential for improvement, achieving gains of up to 1.43 BLEU, 0.54 F1, 2.9 NIST, 0.64 sentence BLEU, and 4.7 sentence NIST points in English to German over the top 100 ITERPE sorted instances.</description><subject>Construction</subject><subject>Datasets</subject><subject>English language</subject><subject>Errors</subject><subject>Experiments</subject><subject>Gain</subject><subject>German language</subject><subject>Linguistics</subject><subject>Lists</subject><subject>Machine translation</subject><subject>Performance enhancement</subject><subject>Predictions</subject><subject>Quality</subject><subject>Ranking</subject><subject>Sentences</subject><subject>Strategy</subject><subject>Translations</subject><issn>1804-0462</issn><issn>0032-6585</issn><issn>1804-0462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>7T9</sourceid><sourceid>AIMQZ</sourceid><sourceid>ALSLI</sourceid><sourceid>CPGLG</sourceid><sourceid>CRLPW</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kM1Lw0AQxRdRsFbvHgNeRIjO7Fc2F0FK_YCKFOp52Ww3bUqa1N0E6X_vlngogjDMvMPvPYZHyDXCPQoUDztv6qpJKaBIAYCdkBEq4ClwSU-P9Dm5CGEDIBWTOCJ3834auqRsffJardbJvI8x3T55N3ZdNS5ZeNOE2nRV21ySs9LUwV393jH5fJ4uJq_p7OPlbfI0Sy3lkqXOWWAZ2qIsUBUlFQYdpZmx6GTGRZ4LKQseF-cooMwhz0qZUaGKpWUGCzYmt0PuzrdfvQud3lbBuro2jWv7oDFjAIphLiJ68wfdtL1v4neRAlQKVMYiBQNlfRuCd6Xe-Wpr_F4j6EN5eihPH8rTh_Ki5XGwfJu6c37pVr7fR3GU_48V43DGfgDBfHUn</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Biçici, Ergun</creator><creator>Specia, Lucia</creator><general>De Gruyter Open</general><general>Institute of Formal and Applied Linguistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>CPGLG</scope><scope>CRLPW</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LIQON</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PMKZF</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PRQQA</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>QuEst for High Quality Machine Translation</title><author>Biçici, Ergun ; Specia, Lucia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Construction</topic><topic>Datasets</topic><topic>English language</topic><topic>Errors</topic><topic>Experiments</topic><topic>Gain</topic><topic>German language</topic><topic>Linguistics</topic><topic>Lists</topic><topic>Machine translation</topic><topic>Performance enhancement</topic><topic>Predictions</topic><topic>Quality</topic><topic>Ranking</topic><topic>Sentences</topic><topic>Strategy</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biçici, Ergun</creatorcontrib><creatorcontrib>Specia, Lucia</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>Linguistics Collection</collection><collection>Linguistics Database</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>One Literature (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest Digital Collections</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Social Sciences</collection><collection>Engineering collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Prague bulletin of mathematical linguistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biçici, Ergun</au><au>Specia, Lucia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QuEst for High Quality Machine Translation</atitle><jtitle>Prague bulletin of mathematical linguistics</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>103</volume><issue>1</issue><spage>43</spage><epage>64</epage><pages>43-64</pages><issn>1804-0462</issn><issn>0032-6585</issn><eissn>1804-0462</eissn><abstract>In this paper we describe the use of QuEst, a framework that aims to obtain predictions on the quality of translations, to improve the performance of machine translation (MT) systems without changing their internal functioning. We apply QuEst to experiments with:
i. multiple system translation ranking, where translations produced by different MT systems are ranked according to their estimated quality, leading to gains of up to 2.72 BLEU, 3.66 BLEUs, and 2.17 F1 points;
ii. n-best list re-ranking, where n-best list translations produced by an MT system are reranked based on predicted quality scores to get the best translation ranked top, which lead to improvements on sentence NIST score by 0.41 points;
iii. n-best list combination, where segments from an n-best list are combined using a latticebased re-scoring approach that minimize word error, obtaining gains of 0.28 BLEU points; and
iv. the ITERPE strategy, which attempts to identify translation errors regardless of prediction errors (ITERPE) and build sentence-specific SMT systems (SSSS) on the ITERPE sorted instances identified as having more potential for improvement, achieving gains of up to 1.43 BLEU, 0.54 F1, 2.9 NIST, 0.64 sentence BLEU, and 4.7 sentence NIST points in English to German over the top 100 ITERPE sorted instances.</abstract><cop>Prague</cop><pub>De Gruyter Open</pub><doi>10.1515/pralin-2015-0003</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1804-0462 |
ispartof | Prague bulletin of mathematical linguistics, 2015-04, Vol.103 (1), p.43-64 |
issn | 1804-0462 0032-6585 1804-0462 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730083195 |
source | Social Science Premium Collection (Proquest) (PQ_SDU_P3); Publicly Available Content (ProQuest); Linguistics Collection; ProQuest One Literature; Linguistics and Language Behavior Abstracts (LLBA) |
subjects | Construction Datasets English language Errors Experiments Gain German language Linguistics Lists Machine translation Performance enhancement Predictions Quality Ranking Sentences Strategy Translations |
title | QuEst for High Quality Machine Translation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T18%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QuEst%20for%20High%20Quality%20Machine%20Translation&rft.jtitle=Prague%20bulletin%20of%20mathematical%20linguistics&rft.au=Bi%C3%A7ici,%20Ergun&rft.date=2015-04-01&rft.volume=103&rft.issue=1&rft.spage=43&rft.epage=64&rft.pages=43-64&rft.issn=1804-0462&rft.eissn=1804-0462&rft_id=info:doi/10.1515/pralin-2015-0003&rft_dat=%3Cproquest_cross%3E3769739481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701880873&rft_id=info:pmid/&rfr_iscdi=true |