Loading…

QuEst for High Quality Machine Translation

In this paper we describe the use of QuEst, a framework that aims to obtain predictions on the quality of translations, to improve the performance of machine translation (MT) systems without changing their internal functioning. We apply QuEst to experiments with: i. multiple system translation ranki...

Full description

Saved in:
Bibliographic Details
Published in:Prague bulletin of mathematical linguistics 2015-04, Vol.103 (1), p.43-64
Main Authors: Biçici, Ergun, Specia, Lucia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3
cites cdi_FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3
container_end_page 64
container_issue 1
container_start_page 43
container_title Prague bulletin of mathematical linguistics
container_volume 103
creator Biçici, Ergun
Specia, Lucia
description In this paper we describe the use of QuEst, a framework that aims to obtain predictions on the quality of translations, to improve the performance of machine translation (MT) systems without changing their internal functioning. We apply QuEst to experiments with: i. multiple system translation ranking, where translations produced by different MT systems are ranked according to their estimated quality, leading to gains of up to 2.72 BLEU, 3.66 BLEUs, and 2.17 F1 points; ii. n-best list re-ranking, where n-best list translations produced by an MT system are reranked based on predicted quality scores to get the best translation ranked top, which lead to improvements on sentence NIST score by 0.41 points; iii. n-best list combination, where segments from an n-best list are combined using a latticebased re-scoring approach that minimize word error, obtaining gains of 0.28 BLEU points; and iv. the ITERPE strategy, which attempts to identify translation errors regardless of prediction errors (ITERPE) and build sentence-specific SMT systems (SSSS) on the ITERPE sorted instances identified as having more potential for improvement, achieving gains of up to 1.43 BLEU, 0.54 F1, 2.9 NIST, 0.64 sentence BLEU, and 4.7 sentence NIST points in English to German over the top 100 ITERPE sorted instances.
doi_str_mv 10.1515/pralin-2015-0003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730083195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3769739481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbvHgNeRIjO7Fc2F0FK_YCKFOp52Ww3bUqa1N0E6X_vlngogjDMvMPvPYZHyDXCPQoUDztv6qpJKaBIAYCdkBEq4ClwSU-P9Dm5CGEDIBWTOCJ3834auqRsffJardbJvI8x3T55N3ZdNS5ZeNOE2nRV21ySs9LUwV393jH5fJ4uJq_p7OPlbfI0Sy3lkqXOWWAZ2qIsUBUlFQYdpZmx6GTGRZ4LKQseF-cooMwhz0qZUaGKpWUGCzYmt0PuzrdfvQud3lbBuro2jWv7oDFjAIphLiJ68wfdtL1v4neRAlQKVMYiBQNlfRuCd6Xe-Wpr_F4j6EN5eihPH8rTh_Ki5XGwfJu6c37pVr7fR3GU_48V43DGfgDBfHUn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701880873</pqid></control><display><type>article</type><title>QuEst for High Quality Machine Translation</title><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Publicly Available Content (ProQuest)</source><source>Linguistics Collection</source><source>ProQuest One Literature</source><source>Linguistics and Language Behavior Abstracts (LLBA)</source><creator>Biçici, Ergun ; Specia, Lucia</creator><creatorcontrib>Biçici, Ergun ; Specia, Lucia</creatorcontrib><description>In this paper we describe the use of QuEst, a framework that aims to obtain predictions on the quality of translations, to improve the performance of machine translation (MT) systems without changing their internal functioning. We apply QuEst to experiments with: i. multiple system translation ranking, where translations produced by different MT systems are ranked according to their estimated quality, leading to gains of up to 2.72 BLEU, 3.66 BLEUs, and 2.17 F1 points; ii. n-best list re-ranking, where n-best list translations produced by an MT system are reranked based on predicted quality scores to get the best translation ranked top, which lead to improvements on sentence NIST score by 0.41 points; iii. n-best list combination, where segments from an n-best list are combined using a latticebased re-scoring approach that minimize word error, obtaining gains of 0.28 BLEU points; and iv. the ITERPE strategy, which attempts to identify translation errors regardless of prediction errors (ITERPE) and build sentence-specific SMT systems (SSSS) on the ITERPE sorted instances identified as having more potential for improvement, achieving gains of up to 1.43 BLEU, 0.54 F1, 2.9 NIST, 0.64 sentence BLEU, and 4.7 sentence NIST points in English to German over the top 100 ITERPE sorted instances.</description><identifier>ISSN: 1804-0462</identifier><identifier>ISSN: 0032-6585</identifier><identifier>EISSN: 1804-0462</identifier><identifier>DOI: 10.1515/pralin-2015-0003</identifier><language>eng</language><publisher>Prague: De Gruyter Open</publisher><subject>Construction ; Datasets ; English language ; Errors ; Experiments ; Gain ; German language ; Linguistics ; Lists ; Machine translation ; Performance enhancement ; Predictions ; Quality ; Ranking ; Sentences ; Strategy ; Translations</subject><ispartof>Prague bulletin of mathematical linguistics, 2015-04, Vol.103 (1), p.43-64</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3</citedby><cites>FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1701880873?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,12827,21358,21370,25728,27898,27899,31243,33585,33586,33885,33886,36986,36987,43706,43869,44563,62631,62632,62634,62647</link.rule.ids></links><search><creatorcontrib>Biçici, Ergun</creatorcontrib><creatorcontrib>Specia, Lucia</creatorcontrib><title>QuEst for High Quality Machine Translation</title><title>Prague bulletin of mathematical linguistics</title><description>In this paper we describe the use of QuEst, a framework that aims to obtain predictions on the quality of translations, to improve the performance of machine translation (MT) systems without changing their internal functioning. We apply QuEst to experiments with: i. multiple system translation ranking, where translations produced by different MT systems are ranked according to their estimated quality, leading to gains of up to 2.72 BLEU, 3.66 BLEUs, and 2.17 F1 points; ii. n-best list re-ranking, where n-best list translations produced by an MT system are reranked based on predicted quality scores to get the best translation ranked top, which lead to improvements on sentence NIST score by 0.41 points; iii. n-best list combination, where segments from an n-best list are combined using a latticebased re-scoring approach that minimize word error, obtaining gains of 0.28 BLEU points; and iv. the ITERPE strategy, which attempts to identify translation errors regardless of prediction errors (ITERPE) and build sentence-specific SMT systems (SSSS) on the ITERPE sorted instances identified as having more potential for improvement, achieving gains of up to 1.43 BLEU, 0.54 F1, 2.9 NIST, 0.64 sentence BLEU, and 4.7 sentence NIST points in English to German over the top 100 ITERPE sorted instances.</description><subject>Construction</subject><subject>Datasets</subject><subject>English language</subject><subject>Errors</subject><subject>Experiments</subject><subject>Gain</subject><subject>German language</subject><subject>Linguistics</subject><subject>Lists</subject><subject>Machine translation</subject><subject>Performance enhancement</subject><subject>Predictions</subject><subject>Quality</subject><subject>Ranking</subject><subject>Sentences</subject><subject>Strategy</subject><subject>Translations</subject><issn>1804-0462</issn><issn>0032-6585</issn><issn>1804-0462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>7T9</sourceid><sourceid>AIMQZ</sourceid><sourceid>ALSLI</sourceid><sourceid>CPGLG</sourceid><sourceid>CRLPW</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kM1Lw0AQxRdRsFbvHgNeRIjO7Fc2F0FK_YCKFOp52Ww3bUqa1N0E6X_vlngogjDMvMPvPYZHyDXCPQoUDztv6qpJKaBIAYCdkBEq4ClwSU-P9Dm5CGEDIBWTOCJ3834auqRsffJardbJvI8x3T55N3ZdNS5ZeNOE2nRV21ySs9LUwV393jH5fJ4uJq_p7OPlbfI0Sy3lkqXOWWAZ2qIsUBUlFQYdpZmx6GTGRZ4LKQseF-cooMwhz0qZUaGKpWUGCzYmt0PuzrdfvQud3lbBuro2jWv7oDFjAIphLiJ68wfdtL1v4neRAlQKVMYiBQNlfRuCd6Xe-Wpr_F4j6EN5eihPH8rTh_Ki5XGwfJu6c37pVr7fR3GU_48V43DGfgDBfHUn</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Biçici, Ergun</creator><creator>Specia, Lucia</creator><general>De Gruyter Open</general><general>Institute of Formal and Applied Linguistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>CPGLG</scope><scope>CRLPW</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LIQON</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PMKZF</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PRQQA</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>QuEst for High Quality Machine Translation</title><author>Biçici, Ergun ; Specia, Lucia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Construction</topic><topic>Datasets</topic><topic>English language</topic><topic>Errors</topic><topic>Experiments</topic><topic>Gain</topic><topic>German language</topic><topic>Linguistics</topic><topic>Lists</topic><topic>Machine translation</topic><topic>Performance enhancement</topic><topic>Predictions</topic><topic>Quality</topic><topic>Ranking</topic><topic>Sentences</topic><topic>Strategy</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biçici, Ergun</creatorcontrib><creatorcontrib>Specia, Lucia</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>Linguistics Collection</collection><collection>Linguistics Database</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>One Literature (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest Digital Collections</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Social Sciences</collection><collection>Engineering collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Prague bulletin of mathematical linguistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biçici, Ergun</au><au>Specia, Lucia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QuEst for High Quality Machine Translation</atitle><jtitle>Prague bulletin of mathematical linguistics</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>103</volume><issue>1</issue><spage>43</spage><epage>64</epage><pages>43-64</pages><issn>1804-0462</issn><issn>0032-6585</issn><eissn>1804-0462</eissn><abstract>In this paper we describe the use of QuEst, a framework that aims to obtain predictions on the quality of translations, to improve the performance of machine translation (MT) systems without changing their internal functioning. We apply QuEst to experiments with: i. multiple system translation ranking, where translations produced by different MT systems are ranked according to their estimated quality, leading to gains of up to 2.72 BLEU, 3.66 BLEUs, and 2.17 F1 points; ii. n-best list re-ranking, where n-best list translations produced by an MT system are reranked based on predicted quality scores to get the best translation ranked top, which lead to improvements on sentence NIST score by 0.41 points; iii. n-best list combination, where segments from an n-best list are combined using a latticebased re-scoring approach that minimize word error, obtaining gains of 0.28 BLEU points; and iv. the ITERPE strategy, which attempts to identify translation errors regardless of prediction errors (ITERPE) and build sentence-specific SMT systems (SSSS) on the ITERPE sorted instances identified as having more potential for improvement, achieving gains of up to 1.43 BLEU, 0.54 F1, 2.9 NIST, 0.64 sentence BLEU, and 4.7 sentence NIST points in English to German over the top 100 ITERPE sorted instances.</abstract><cop>Prague</cop><pub>De Gruyter Open</pub><doi>10.1515/pralin-2015-0003</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1804-0462
ispartof Prague bulletin of mathematical linguistics, 2015-04, Vol.103 (1), p.43-64
issn 1804-0462
0032-6585
1804-0462
language eng
recordid cdi_proquest_miscellaneous_1730083195
source Social Science Premium Collection (Proquest) (PQ_SDU_P3); Publicly Available Content (ProQuest); Linguistics Collection; ProQuest One Literature; Linguistics and Language Behavior Abstracts (LLBA)
subjects Construction
Datasets
English language
Errors
Experiments
Gain
German language
Linguistics
Lists
Machine translation
Performance enhancement
Predictions
Quality
Ranking
Sentences
Strategy
Translations
title QuEst for High Quality Machine Translation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T18%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QuEst%20for%20High%20Quality%20Machine%20Translation&rft.jtitle=Prague%20bulletin%20of%20mathematical%20linguistics&rft.au=Bi%C3%A7ici,%20Ergun&rft.date=2015-04-01&rft.volume=103&rft.issue=1&rft.spage=43&rft.epage=64&rft.pages=43-64&rft.issn=1804-0462&rft.eissn=1804-0462&rft_id=info:doi/10.1515/pralin-2015-0003&rft_dat=%3Cproquest_cross%3E3769739481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2463-eec0371cbfb18bf25a1e227ac1e674599566b456644150f9097f67258bdc3a1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701880873&rft_id=info:pmid/&rfr_iscdi=true