Loading…

LDPE/EVA/graphene nanocomposites with enhanced mechanical and gas permeability properties

In the present work, graphene oxide (GO) and reduced graphene oxide (RGO) were incorporated at low‐density polyethylene (LDPE)/ethylene vinyl acetate (EVA) copolymer blend using solution casting method. Monolayer GO with 1‐nm thickness and good transparency was synthesized using the well‐known Humme...

Full description

Saved in:
Bibliographic Details
Published in:Polymers for advanced technologies 2015-09, Vol.26 (9), p.1083-1090
Main Authors: Tayebi, Meysam, Ramazani S.A, Ahmad, Hamed Mosavian, M. T., Tayyebi, Ahmad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present work, graphene oxide (GO) and reduced graphene oxide (RGO) were incorporated at low‐density polyethylene (LDPE)/ethylene vinyl acetate (EVA) copolymer blend using solution casting method. Monolayer GO with 1‐nm thickness and good transparency was synthesized using the well‐known Hummers's method. Fourier transform infrared and X‐ray photoelectron spectroscopy data exhibited efficient reduction of GO with almost high C/O ratio of RGO. Scanning electron microscopy showed the well distribution of GO and RGO within LDPE/EVA polymer matrix. The integrating effects of GO and RGO on mechanical and gas permeability of prepared films were examined. Young's modulus of nanocomposites are improved 65% and 92% by adding 7 wt% of GO and RGO, respectively. The tensile measurements showed that maximum tensile strength emerged in 3 wt% of loading for RGO and 5 wt% for GO. The measured oxygen and carbon dioxide permeability represented noticeably the attenuation of gas permeability in composite films compared with pristine LDPE/EVA blend. Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:1042-7147
1099-1581
DOI:10.1002/pat.3537