Loading…
Energy level modeling of lanthanide materials: review and uncertainty analysis
Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shi...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2015-01, Vol.17 (29), p.19058-19078 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023 |
container_end_page | 19078 |
container_issue | 29 |
container_start_page | 19058 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 17 |
creator | Joos, Jonas J Poelman, Dirk Smet, Philippe F |
description | Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shift model by Thiel and Dorenbos. This model allows us to calculate the electronic and optical properties of the considered materials. However, an unbiased assessment of the accuracy of the obtained values of the calculated parameters is still lacking to a large extent. In this paper, error margins for calculated electronic and optical properties are deduced. It is found that optical transitions can be predicted within an acceptable error margin, while the description of phenomena involving conduction band states is limited to qualitative interpretation due to the large error margins for physical observables such as thermal quenching temperature, corresponding to standard deviations in the range 0.3-0.5 eV for the relevant energy differences. As an example, the electronic structure of lanthanide doped calcium thiogallate (CaGa2S4) is determined, taking the experimental spectra of CaGa2S4:Ln(Q+) (Ln(Q+) = Ce(3+), Eu(2+), Tm(3+)) as input. Two different approaches to obtain the shape of the zig-zag curves connecting the 4f levels of the different lanthanides are explored and compared. |
doi_str_mv | 10.1039/c5cp02156a |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730101505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1697212335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqWw4QNQlggpMI5ju2ZXReUhIWAB68h2psUoj2InRfl7Ulq6ZTUz0tHVnUPIOYVrCkzdWG5XkFAu9AEZ01SwWME0PdzvUozISQifAEA5ZcdklAiaKMX4mDzPa_TLPipxjWVUNQWWrl5GzSIqdd1-6NoVGFW6Re90GW4jj2uH35Gui6irLfpWu7rth1uXfXDhlBwtBg7PdnNC3u_mb9lD_PRy_5jNnmKbJrKNlShSLaepmgIHszAKmJZKoUAhUxjaWUaZMRY4WkU1M6lBAMskRwoGEjYhl9vclW--OgxtXrlgsRxKY9OFnEoGdPgW-P-oUDKhCWMb9GqLWt-E4HGRr7yrtO9zCvlGdZ7x7PVX9WyAL3a5namw2KN_btkPZUt4RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697212335</pqid></control><display><type>article</type><title>Energy level modeling of lanthanide materials: review and uncertainty analysis</title><source>Royal Society of Chemistry Journals</source><creator>Joos, Jonas J ; Poelman, Dirk ; Smet, Philippe F</creator><creatorcontrib>Joos, Jonas J ; Poelman, Dirk ; Smet, Philippe F</creatorcontrib><description>Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shift model by Thiel and Dorenbos. This model allows us to calculate the electronic and optical properties of the considered materials. However, an unbiased assessment of the accuracy of the obtained values of the calculated parameters is still lacking to a large extent. In this paper, error margins for calculated electronic and optical properties are deduced. It is found that optical transitions can be predicted within an acceptable error margin, while the description of phenomena involving conduction band states is limited to qualitative interpretation due to the large error margins for physical observables such as thermal quenching temperature, corresponding to standard deviations in the range 0.3-0.5 eV for the relevant energy differences. As an example, the electronic structure of lanthanide doped calcium thiogallate (CaGa2S4) is determined, taking the experimental spectra of CaGa2S4:Ln(Q+) (Ln(Q+) = Ce(3+), Eu(2+), Tm(3+)) as input. Two different approaches to obtain the shape of the zig-zag curves connecting the 4f levels of the different lanthanides are explored and compared.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp02156a</identifier><identifier>PMID: 26129935</identifier><language>eng</language><publisher>England</publisher><subject>Assessments ; Atomic spectra ; Electronics ; Energy levels ; Errors ; Lanthanides ; Lanthanoid Series Elements - chemistry ; Luminescence ; Mathematical models ; Models, Chemical ; Optical properties ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-01, Vol.17 (29), p.19058-19078</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023</citedby><cites>FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023</cites><orcidid>0000-0002-3930-172X ; 0000-0003-4789-5799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26129935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joos, Jonas J</creatorcontrib><creatorcontrib>Poelman, Dirk</creatorcontrib><creatorcontrib>Smet, Philippe F</creatorcontrib><title>Energy level modeling of lanthanide materials: review and uncertainty analysis</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shift model by Thiel and Dorenbos. This model allows us to calculate the electronic and optical properties of the considered materials. However, an unbiased assessment of the accuracy of the obtained values of the calculated parameters is still lacking to a large extent. In this paper, error margins for calculated electronic and optical properties are deduced. It is found that optical transitions can be predicted within an acceptable error margin, while the description of phenomena involving conduction band states is limited to qualitative interpretation due to the large error margins for physical observables such as thermal quenching temperature, corresponding to standard deviations in the range 0.3-0.5 eV for the relevant energy differences. As an example, the electronic structure of lanthanide doped calcium thiogallate (CaGa2S4) is determined, taking the experimental spectra of CaGa2S4:Ln(Q+) (Ln(Q+) = Ce(3+), Eu(2+), Tm(3+)) as input. Two different approaches to obtain the shape of the zig-zag curves connecting the 4f levels of the different lanthanides are explored and compared.</description><subject>Assessments</subject><subject>Atomic spectra</subject><subject>Electronics</subject><subject>Energy levels</subject><subject>Errors</subject><subject>Lanthanides</subject><subject>Lanthanoid Series Elements - chemistry</subject><subject>Luminescence</subject><subject>Mathematical models</subject><subject>Models, Chemical</subject><subject>Optical properties</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqWw4QNQlggpMI5ju2ZXReUhIWAB68h2psUoj2InRfl7Ulq6ZTUz0tHVnUPIOYVrCkzdWG5XkFAu9AEZ01SwWME0PdzvUozISQifAEA5ZcdklAiaKMX4mDzPa_TLPipxjWVUNQWWrl5GzSIqdd1-6NoVGFW6Re90GW4jj2uH35Gui6irLfpWu7rth1uXfXDhlBwtBg7PdnNC3u_mb9lD_PRy_5jNnmKbJrKNlShSLaepmgIHszAKmJZKoUAhUxjaWUaZMRY4WkU1M6lBAMskRwoGEjYhl9vclW--OgxtXrlgsRxKY9OFnEoGdPgW-P-oUDKhCWMb9GqLWt-E4HGRr7yrtO9zCvlGdZ7x7PVX9WyAL3a5namw2KN_btkPZUt4RA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Joos, Jonas J</creator><creator>Poelman, Dirk</creator><creator>Smet, Philippe F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3930-172X</orcidid><orcidid>https://orcid.org/0000-0003-4789-5799</orcidid></search><sort><creationdate>20150101</creationdate><title>Energy level modeling of lanthanide materials: review and uncertainty analysis</title><author>Joos, Jonas J ; Poelman, Dirk ; Smet, Philippe F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assessments</topic><topic>Atomic spectra</topic><topic>Electronics</topic><topic>Energy levels</topic><topic>Errors</topic><topic>Lanthanides</topic><topic>Lanthanoid Series Elements - chemistry</topic><topic>Luminescence</topic><topic>Mathematical models</topic><topic>Models, Chemical</topic><topic>Optical properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joos, Jonas J</creatorcontrib><creatorcontrib>Poelman, Dirk</creatorcontrib><creatorcontrib>Smet, Philippe F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joos, Jonas J</au><au>Poelman, Dirk</au><au>Smet, Philippe F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy level modeling of lanthanide materials: review and uncertainty analysis</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>17</volume><issue>29</issue><spage>19058</spage><epage>19078</epage><pages>19058-19078</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shift model by Thiel and Dorenbos. This model allows us to calculate the electronic and optical properties of the considered materials. However, an unbiased assessment of the accuracy of the obtained values of the calculated parameters is still lacking to a large extent. In this paper, error margins for calculated electronic and optical properties are deduced. It is found that optical transitions can be predicted within an acceptable error margin, while the description of phenomena involving conduction band states is limited to qualitative interpretation due to the large error margins for physical observables such as thermal quenching temperature, corresponding to standard deviations in the range 0.3-0.5 eV for the relevant energy differences. As an example, the electronic structure of lanthanide doped calcium thiogallate (CaGa2S4) is determined, taking the experimental spectra of CaGa2S4:Ln(Q+) (Ln(Q+) = Ce(3+), Eu(2+), Tm(3+)) as input. Two different approaches to obtain the shape of the zig-zag curves connecting the 4f levels of the different lanthanides are explored and compared.</abstract><cop>England</cop><pmid>26129935</pmid><doi>10.1039/c5cp02156a</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3930-172X</orcidid><orcidid>https://orcid.org/0000-0003-4789-5799</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2015-01, Vol.17 (29), p.19058-19078 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730101505 |
source | Royal Society of Chemistry Journals |
subjects | Assessments Atomic spectra Electronics Energy levels Errors Lanthanides Lanthanoid Series Elements - chemistry Luminescence Mathematical models Models, Chemical Optical properties Thermodynamics |
title | Energy level modeling of lanthanide materials: review and uncertainty analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20level%20modeling%20of%20lanthanide%20materials:%20review%20and%20uncertainty%20analysis&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Joos,%20Jonas%20J&rft.date=2015-01-01&rft.volume=17&rft.issue=29&rft.spage=19058&rft.epage=19078&rft.pages=19058-19078&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp02156a&rft_dat=%3Cproquest_cross%3E1697212335%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1697212335&rft_id=info:pmid/26129935&rfr_iscdi=true |