Loading…

Energy level modeling of lanthanide materials: review and uncertainty analysis

Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shi...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2015-01, Vol.17 (29), p.19058-19078
Main Authors: Joos, Jonas J, Poelman, Dirk, Smet, Philippe F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023
cites cdi_FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023
container_end_page 19078
container_issue 29
container_start_page 19058
container_title Physical chemistry chemical physics : PCCP
container_volume 17
creator Joos, Jonas J
Poelman, Dirk
Smet, Philippe F
description Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shift model by Thiel and Dorenbos. This model allows us to calculate the electronic and optical properties of the considered materials. However, an unbiased assessment of the accuracy of the obtained values of the calculated parameters is still lacking to a large extent. In this paper, error margins for calculated electronic and optical properties are deduced. It is found that optical transitions can be predicted within an acceptable error margin, while the description of phenomena involving conduction band states is limited to qualitative interpretation due to the large error margins for physical observables such as thermal quenching temperature, corresponding to standard deviations in the range 0.3-0.5 eV for the relevant energy differences. As an example, the electronic structure of lanthanide doped calcium thiogallate (CaGa2S4) is determined, taking the experimental spectra of CaGa2S4:Ln(Q+) (Ln(Q+) = Ce(3+), Eu(2+), Tm(3+)) as input. Two different approaches to obtain the shape of the zig-zag curves connecting the 4f levels of the different lanthanides are explored and compared.
doi_str_mv 10.1039/c5cp02156a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730101505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1697212335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqWw4QNQlggpMI5ju2ZXReUhIWAB68h2psUoj2InRfl7Ulq6ZTUz0tHVnUPIOYVrCkzdWG5XkFAu9AEZ01SwWME0PdzvUozISQifAEA5ZcdklAiaKMX4mDzPa_TLPipxjWVUNQWWrl5GzSIqdd1-6NoVGFW6Re90GW4jj2uH35Gui6irLfpWu7rth1uXfXDhlBwtBg7PdnNC3u_mb9lD_PRy_5jNnmKbJrKNlShSLaepmgIHszAKmJZKoUAhUxjaWUaZMRY4WkU1M6lBAMskRwoGEjYhl9vclW--OgxtXrlgsRxKY9OFnEoGdPgW-P-oUDKhCWMb9GqLWt-E4HGRr7yrtO9zCvlGdZ7x7PVX9WyAL3a5namw2KN_btkPZUt4RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1697212335</pqid></control><display><type>article</type><title>Energy level modeling of lanthanide materials: review and uncertainty analysis</title><source>Royal Society of Chemistry Journals</source><creator>Joos, Jonas J ; Poelman, Dirk ; Smet, Philippe F</creator><creatorcontrib>Joos, Jonas J ; Poelman, Dirk ; Smet, Philippe F</creatorcontrib><description>Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shift model by Thiel and Dorenbos. This model allows us to calculate the electronic and optical properties of the considered materials. However, an unbiased assessment of the accuracy of the obtained values of the calculated parameters is still lacking to a large extent. In this paper, error margins for calculated electronic and optical properties are deduced. It is found that optical transitions can be predicted within an acceptable error margin, while the description of phenomena involving conduction band states is limited to qualitative interpretation due to the large error margins for physical observables such as thermal quenching temperature, corresponding to standard deviations in the range 0.3-0.5 eV for the relevant energy differences. As an example, the electronic structure of lanthanide doped calcium thiogallate (CaGa2S4) is determined, taking the experimental spectra of CaGa2S4:Ln(Q+) (Ln(Q+) = Ce(3+), Eu(2+), Tm(3+)) as input. Two different approaches to obtain the shape of the zig-zag curves connecting the 4f levels of the different lanthanides are explored and compared.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp02156a</identifier><identifier>PMID: 26129935</identifier><language>eng</language><publisher>England</publisher><subject>Assessments ; Atomic spectra ; Electronics ; Energy levels ; Errors ; Lanthanides ; Lanthanoid Series Elements - chemistry ; Luminescence ; Mathematical models ; Models, Chemical ; Optical properties ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-01, Vol.17 (29), p.19058-19078</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023</citedby><cites>FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023</cites><orcidid>0000-0002-3930-172X ; 0000-0003-4789-5799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26129935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joos, Jonas J</creatorcontrib><creatorcontrib>Poelman, Dirk</creatorcontrib><creatorcontrib>Smet, Philippe F</creatorcontrib><title>Energy level modeling of lanthanide materials: review and uncertainty analysis</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shift model by Thiel and Dorenbos. This model allows us to calculate the electronic and optical properties of the considered materials. However, an unbiased assessment of the accuracy of the obtained values of the calculated parameters is still lacking to a large extent. In this paper, error margins for calculated electronic and optical properties are deduced. It is found that optical transitions can be predicted within an acceptable error margin, while the description of phenomena involving conduction band states is limited to qualitative interpretation due to the large error margins for physical observables such as thermal quenching temperature, corresponding to standard deviations in the range 0.3-0.5 eV for the relevant energy differences. As an example, the electronic structure of lanthanide doped calcium thiogallate (CaGa2S4) is determined, taking the experimental spectra of CaGa2S4:Ln(Q+) (Ln(Q+) = Ce(3+), Eu(2+), Tm(3+)) as input. Two different approaches to obtain the shape of the zig-zag curves connecting the 4f levels of the different lanthanides are explored and compared.</description><subject>Assessments</subject><subject>Atomic spectra</subject><subject>Electronics</subject><subject>Energy levels</subject><subject>Errors</subject><subject>Lanthanides</subject><subject>Lanthanoid Series Elements - chemistry</subject><subject>Luminescence</subject><subject>Mathematical models</subject><subject>Models, Chemical</subject><subject>Optical properties</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqWw4QNQlggpMI5ju2ZXReUhIWAB68h2psUoj2InRfl7Ulq6ZTUz0tHVnUPIOYVrCkzdWG5XkFAu9AEZ01SwWME0PdzvUozISQifAEA5ZcdklAiaKMX4mDzPa_TLPipxjWVUNQWWrl5GzSIqdd1-6NoVGFW6Re90GW4jj2uH35Gui6irLfpWu7rth1uXfXDhlBwtBg7PdnNC3u_mb9lD_PRy_5jNnmKbJrKNlShSLaepmgIHszAKmJZKoUAhUxjaWUaZMRY4WkU1M6lBAMskRwoGEjYhl9vclW--OgxtXrlgsRxKY9OFnEoGdPgW-P-oUDKhCWMb9GqLWt-E4HGRr7yrtO9zCvlGdZ7x7PVX9WyAL3a5namw2KN_btkPZUt4RA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Joos, Jonas J</creator><creator>Poelman, Dirk</creator><creator>Smet, Philippe F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3930-172X</orcidid><orcidid>https://orcid.org/0000-0003-4789-5799</orcidid></search><sort><creationdate>20150101</creationdate><title>Energy level modeling of lanthanide materials: review and uncertainty analysis</title><author>Joos, Jonas J ; Poelman, Dirk ; Smet, Philippe F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assessments</topic><topic>Atomic spectra</topic><topic>Electronics</topic><topic>Energy levels</topic><topic>Errors</topic><topic>Lanthanides</topic><topic>Lanthanoid Series Elements - chemistry</topic><topic>Luminescence</topic><topic>Mathematical models</topic><topic>Models, Chemical</topic><topic>Optical properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joos, Jonas J</creatorcontrib><creatorcontrib>Poelman, Dirk</creatorcontrib><creatorcontrib>Smet, Philippe F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joos, Jonas J</au><au>Poelman, Dirk</au><au>Smet, Philippe F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy level modeling of lanthanide materials: review and uncertainty analysis</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>17</volume><issue>29</issue><spage>19058</spage><epage>19078</epage><pages>19058-19078</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shift model by Thiel and Dorenbos. This model allows us to calculate the electronic and optical properties of the considered materials. However, an unbiased assessment of the accuracy of the obtained values of the calculated parameters is still lacking to a large extent. In this paper, error margins for calculated electronic and optical properties are deduced. It is found that optical transitions can be predicted within an acceptable error margin, while the description of phenomena involving conduction band states is limited to qualitative interpretation due to the large error margins for physical observables such as thermal quenching temperature, corresponding to standard deviations in the range 0.3-0.5 eV for the relevant energy differences. As an example, the electronic structure of lanthanide doped calcium thiogallate (CaGa2S4) is determined, taking the experimental spectra of CaGa2S4:Ln(Q+) (Ln(Q+) = Ce(3+), Eu(2+), Tm(3+)) as input. Two different approaches to obtain the shape of the zig-zag curves connecting the 4f levels of the different lanthanides are explored and compared.</abstract><cop>England</cop><pmid>26129935</pmid><doi>10.1039/c5cp02156a</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3930-172X</orcidid><orcidid>https://orcid.org/0000-0003-4789-5799</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2015-01, Vol.17 (29), p.19058-19078
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1730101505
source Royal Society of Chemistry Journals
subjects Assessments
Atomic spectra
Electronics
Energy levels
Errors
Lanthanides
Lanthanoid Series Elements - chemistry
Luminescence
Mathematical models
Models, Chemical
Optical properties
Thermodynamics
title Energy level modeling of lanthanide materials: review and uncertainty analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20level%20modeling%20of%20lanthanide%20materials:%20review%20and%20uncertainty%20analysis&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Joos,%20Jonas%20J&rft.date=2015-01-01&rft.volume=17&rft.issue=29&rft.spage=19058&rft.epage=19078&rft.pages=19058-19078&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp02156a&rft_dat=%3Cproquest_cross%3E1697212335%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-96d4a78498050bfb903a799e6e6740261c313bbc05ec91a3b4be00c375e10b023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1697212335&rft_id=info:pmid/26129935&rfr_iscdi=true