Loading…

Corrosion and wear behavior of an Mg–2Zn–0.2Mn alloy in simulated body fluid

In this work, the corrosion behavior of the ascast and extrusion and aging treatment Mg–2Zn–0.2Mn alloy in simulated body fluid(SBF) were studied. The wear behavior of Mg–2Zn–0.2Mn alloy was investigated using pin-on-disk technique and stainless steel as counterbody under a constant sliding velocity...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2015-08, Vol.34 (8), p.553-559
Main Authors: Liu, De-Bao, Wu, Bo, Wang, Xiao, Chen, Min-Fang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, the corrosion behavior of the ascast and extrusion and aging treatment Mg–2Zn–0.2Mn alloy in simulated body fluid(SBF) were studied. The wear behavior of Mg–2Zn–0.2Mn alloy was investigated using pin-on-disk technique and stainless steel as counterbody under a constant sliding velocity at different loads ranging from 2 to 5 N with deionized water and SBF as lubrication.The results showed that the extrusion and aging treatment Mg–2Zn–0.2Mn alloy exhibited better corrosion resistance compared with the as-cast alloy due to finer average grain size, more homogeneous phase distribution, and decrease in porosity. The friction coefficient of fractional pair under SBF and deionized water lubrication were obviously lower than that of dry sliding condition. However, the wear rate of Mg–2Zn–0.2Mn alloy under SBF lubrication was higher than that of dry sliding and deionized water lubrication due to the corrosiveness of SBF accelerated the wear of the magnesium alloy. The magnesium alloy exhibited different wear mechanisms with the variety of loads and lubrication conditions.
ISSN:1001-0521
1867-7185
DOI:10.1007/s12598-013-0052-y