Loading…

Sustainability of superhydrophobicity under pressure

Prior studies have demonstrated that superhydrophobicity of submerged surfaces is influenced by hydrostatic pressure and other environmental effects. Sustainability of a superhydrophobic surface could be characterized by both how long it maintains the trapped air in its surface pores, so-called &quo...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2012-11, Vol.24 (11)
Main Authors: SAMAHA, Mohamed A, VAHEDI TAFRESHI, Hooman, GAD-EL-HAK, Mohamed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prior studies have demonstrated that superhydrophobicity of submerged surfaces is influenced by hydrostatic pressure and other environmental effects. Sustainability of a superhydrophobic surface could be characterized by both how long it maintains the trapped air in its surface pores, so-called "longevity," and the pressure beyond which it undergoes a global wetting transition, so-called "terminal pressure." In this work, we investigate the effects of pressure on the performance of electrospun polystyrene fibrous coatings. The time-dependent hydrophobicity of the submerged coating in a pressure vessel is optically measured under elevated pressures. Rheological studies are also performed to determine the effects of pressure on drag reduction and slip length. The measurements indicate that surface longevity exponentially decays with increasing pressure in perfect agreement with the studies reported in the literature at lower pressures. It is found, however, that fibrous coatings could resist hydrostatic pressures significantly higher than those of previously reported surfaces. Our observations indicate that superhydrophobic fibrous coatings could potentially be used for underwater applications.
ISSN:1070-6631
1089-7666
DOI:10.1063/1.4766200