Loading…
A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis
Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass ofminor H1 variants that are induced by drought and abscisic acid...
Saved in:
Published in: | Plant physiology (Bethesda) 2015-11, Vol.169 (3), p.2080-2101 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-6739e139b35ee8809ede71a1775ac5c794662094dda4fecba21f0443488301793 |
---|---|
cites | |
container_end_page | 2101 |
container_issue | 3 |
container_start_page | 2080 |
container_title | Plant physiology (Bethesda) |
container_volume | 169 |
creator | Rutowicz, Kinga Puzio, Marcin Halibart-Puzio, Joanna Lirski, Maciej Kotliński, Maciej Kroteń, Magdalena A. Knizewski, Lukasz Lange, Bartosz Muszewska, Anna Śniegowska-Świerk, Katarzyna Kościelniak, Janusz Iwanicka-Nowicka, Roksana Buza, Krisztián Janowiak, Franciszek Żmuda, Katarzyna Jõesaar, Indrek Laskowska-Kaszub, Katarzyna Fogtman, Anna Kollist, Hannes Zielenkiewicz, Piotr Tiuryn, Jerzy Siedlecki, Paweł Swiezewski, Szymon Ginalski, Krzysztof Koblowska, Marta Archacki, Rafał Wilczynski, Bartek Rapacz, Marcin Jerzmanowski, Andrzej |
description | Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass ofminor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stress-inducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses ofh1.3null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription.We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants. |
doi_str_mv | 10.1104/pp.15.00493 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730681296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24807346</jstor_id><sourcerecordid>24807346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-6739e139b35ee8809ede71a1775ac5c794662094dda4fecba21f0443488301793</originalsourceid><addsrcrecordid>eNpFkE1v1DAQhi0EotvCiTOVj5XQLjOxk9jHaFu6lQpIFLhGTjIRrrKxa3urll_Az8btlnKaj_eZOTyMvUNYIYL86P0KyxWA1OIFW2ApimVRSvWSLQByD0rpA3YY4zUAoED5mh0UlShRQL1gfxp-5am3ZrK_aeAbG5ObiW-Q_zTBmjnxi8i_0c3OhhyPLvBmMD7ZW8rb6N0cKfLk-Npt_UR3vOmsS7bnVylQjNzMQ-Ymk_Lx6ZeGf6b06z6P1s3czrwJprOD89HGN-zVaKZIb5_qEfvx6ez7erO8_Hp-sW4ul71EmZZVLTSh0J0oiZQCTQPVaLCuS9OXfa1lVRWg5TAYOVLfmQJHkFJIpQRgrcURO9n_9cHd7CimdmtjT9NkZnK72GItoFJY6CqjH_ZoH1yMgcbWB7s14b5FaB_Ut963WLaP6jN9_PR4121peGb_uc7A-z1wnR2H_7lUOZSV-AtHaIgD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730681296</pqid></control><display><type>article</type><title>A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Rutowicz, Kinga ; Puzio, Marcin ; Halibart-Puzio, Joanna ; Lirski, Maciej ; Kotliński, Maciej ; Kroteń, Magdalena A. ; Knizewski, Lukasz ; Lange, Bartosz ; Muszewska, Anna ; Śniegowska-Świerk, Katarzyna ; Kościelniak, Janusz ; Iwanicka-Nowicka, Roksana ; Buza, Krisztián ; Janowiak, Franciszek ; Żmuda, Katarzyna ; Jõesaar, Indrek ; Laskowska-Kaszub, Katarzyna ; Fogtman, Anna ; Kollist, Hannes ; Zielenkiewicz, Piotr ; Tiuryn, Jerzy ; Siedlecki, Paweł ; Swiezewski, Szymon ; Ginalski, Krzysztof ; Koblowska, Marta ; Archacki, Rafał ; Wilczynski, Bartek ; Rapacz, Marcin ; Jerzmanowski, Andrzej</creator><creatorcontrib>Rutowicz, Kinga ; Puzio, Marcin ; Halibart-Puzio, Joanna ; Lirski, Maciej ; Kotliński, Maciej ; Kroteń, Magdalena A. ; Knizewski, Lukasz ; Lange, Bartosz ; Muszewska, Anna ; Śniegowska-Świerk, Katarzyna ; Kościelniak, Janusz ; Iwanicka-Nowicka, Roksana ; Buza, Krisztián ; Janowiak, Franciszek ; Żmuda, Katarzyna ; Jõesaar, Indrek ; Laskowska-Kaszub, Katarzyna ; Fogtman, Anna ; Kollist, Hannes ; Zielenkiewicz, Piotr ; Tiuryn, Jerzy ; Siedlecki, Paweł ; Swiezewski, Szymon ; Ginalski, Krzysztof ; Koblowska, Marta ; Archacki, Rafał ; Wilczynski, Bartek ; Rapacz, Marcin ; Jerzmanowski, Andrzej</creatorcontrib><description>Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass ofminor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stress-inducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses ofh1.3null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription.We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.15.00493</identifier><identifier>PMID: 26351307</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Abscisic Acid - metabolism ; Adaptation, Physiological ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - physiology ; Arabidopsis - radiation effects ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; DNA ; DNA Methylation ; Drought ; Droughts ; Epigenesis, Genetic ; Gene Expression Regulation, Plant ; Genes ; GENES, DEVELOPMENT, AND EVOLUTION ; Genes, Reporter ; Guard cells ; Heterochromatin - genetics ; Heterochromatin - metabolism ; Histones ; Histones - genetics ; Histones - metabolism ; Leaves ; Light ; Methylation ; Plant Growth Regulators - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Stress, Physiological ; Transposons</subject><ispartof>Plant physiology (Bethesda), 2015-11, Vol.169 (3), p.2080-2101</ispartof><rights>Copyright © 2015 American Society of Plant Biologists</rights><rights>2015 American Society of Plant Biologists. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-6739e139b35ee8809ede71a1775ac5c794662094dda4fecba21f0443488301793</citedby><orcidid>0000-0002-4684-4503 ; 0000-0002-5331-7840 ; 0000-0002-8115-1649 ; 0000-0002-7111-6452 ; 0000-0003-1071-1159 ; 0000-0002-1095-8998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24807346$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24807346$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26351307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rutowicz, Kinga</creatorcontrib><creatorcontrib>Puzio, Marcin</creatorcontrib><creatorcontrib>Halibart-Puzio, Joanna</creatorcontrib><creatorcontrib>Lirski, Maciej</creatorcontrib><creatorcontrib>Kotliński, Maciej</creatorcontrib><creatorcontrib>Kroteń, Magdalena A.</creatorcontrib><creatorcontrib>Knizewski, Lukasz</creatorcontrib><creatorcontrib>Lange, Bartosz</creatorcontrib><creatorcontrib>Muszewska, Anna</creatorcontrib><creatorcontrib>Śniegowska-Świerk, Katarzyna</creatorcontrib><creatorcontrib>Kościelniak, Janusz</creatorcontrib><creatorcontrib>Iwanicka-Nowicka, Roksana</creatorcontrib><creatorcontrib>Buza, Krisztián</creatorcontrib><creatorcontrib>Janowiak, Franciszek</creatorcontrib><creatorcontrib>Żmuda, Katarzyna</creatorcontrib><creatorcontrib>Jõesaar, Indrek</creatorcontrib><creatorcontrib>Laskowska-Kaszub, Katarzyna</creatorcontrib><creatorcontrib>Fogtman, Anna</creatorcontrib><creatorcontrib>Kollist, Hannes</creatorcontrib><creatorcontrib>Zielenkiewicz, Piotr</creatorcontrib><creatorcontrib>Tiuryn, Jerzy</creatorcontrib><creatorcontrib>Siedlecki, Paweł</creatorcontrib><creatorcontrib>Swiezewski, Szymon</creatorcontrib><creatorcontrib>Ginalski, Krzysztof</creatorcontrib><creatorcontrib>Koblowska, Marta</creatorcontrib><creatorcontrib>Archacki, Rafał</creatorcontrib><creatorcontrib>Wilczynski, Bartek</creatorcontrib><creatorcontrib>Rapacz, Marcin</creatorcontrib><creatorcontrib>Jerzmanowski, Andrzej</creatorcontrib><title>A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass ofminor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stress-inducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses ofh1.3null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription.We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants.</description><subject>Abscisic Acid - metabolism</subject><subject>Adaptation, Physiological</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis - radiation effects</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>Drought</subject><subject>Droughts</subject><subject>Epigenesis, Genetic</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>GENES, DEVELOPMENT, AND EVOLUTION</subject><subject>Genes, Reporter</subject><subject>Guard cells</subject><subject>Heterochromatin - genetics</subject><subject>Heterochromatin - metabolism</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Leaves</subject><subject>Light</subject><subject>Methylation</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Stress, Physiological</subject><subject>Transposons</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkE1v1DAQhi0EotvCiTOVj5XQLjOxk9jHaFu6lQpIFLhGTjIRrrKxa3urll_Az8btlnKaj_eZOTyMvUNYIYL86P0KyxWA1OIFW2ApimVRSvWSLQByD0rpA3YY4zUAoED5mh0UlShRQL1gfxp-5am3ZrK_aeAbG5ObiW-Q_zTBmjnxi8i_0c3OhhyPLvBmMD7ZW8rb6N0cKfLk-Npt_UR3vOmsS7bnVylQjNzMQ-Ymk_Lx6ZeGf6b06z6P1s3czrwJprOD89HGN-zVaKZIb5_qEfvx6ez7erO8_Hp-sW4ul71EmZZVLTSh0J0oiZQCTQPVaLCuS9OXfa1lVRWg5TAYOVLfmQJHkFJIpQRgrcURO9n_9cHd7CimdmtjT9NkZnK72GItoFJY6CqjH_ZoH1yMgcbWB7s14b5FaB_Ut963WLaP6jN9_PR4121peGb_uc7A-z1wnR2H_7lUOZSV-AtHaIgD</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Rutowicz, Kinga</creator><creator>Puzio, Marcin</creator><creator>Halibart-Puzio, Joanna</creator><creator>Lirski, Maciej</creator><creator>Kotliński, Maciej</creator><creator>Kroteń, Magdalena A.</creator><creator>Knizewski, Lukasz</creator><creator>Lange, Bartosz</creator><creator>Muszewska, Anna</creator><creator>Śniegowska-Świerk, Katarzyna</creator><creator>Kościelniak, Janusz</creator><creator>Iwanicka-Nowicka, Roksana</creator><creator>Buza, Krisztián</creator><creator>Janowiak, Franciszek</creator><creator>Żmuda, Katarzyna</creator><creator>Jõesaar, Indrek</creator><creator>Laskowska-Kaszub, Katarzyna</creator><creator>Fogtman, Anna</creator><creator>Kollist, Hannes</creator><creator>Zielenkiewicz, Piotr</creator><creator>Tiuryn, Jerzy</creator><creator>Siedlecki, Paweł</creator><creator>Swiezewski, Szymon</creator><creator>Ginalski, Krzysztof</creator><creator>Koblowska, Marta</creator><creator>Archacki, Rafał</creator><creator>Wilczynski, Bartek</creator><creator>Rapacz, Marcin</creator><creator>Jerzmanowski, Andrzej</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4684-4503</orcidid><orcidid>https://orcid.org/0000-0002-5331-7840</orcidid><orcidid>https://orcid.org/0000-0002-8115-1649</orcidid><orcidid>https://orcid.org/0000-0002-7111-6452</orcidid><orcidid>https://orcid.org/0000-0003-1071-1159</orcidid><orcidid>https://orcid.org/0000-0002-1095-8998</orcidid></search><sort><creationdate>20151101</creationdate><title>A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis</title><author>Rutowicz, Kinga ; Puzio, Marcin ; Halibart-Puzio, Joanna ; Lirski, Maciej ; Kotliński, Maciej ; Kroteń, Magdalena A. ; Knizewski, Lukasz ; Lange, Bartosz ; Muszewska, Anna ; Śniegowska-Świerk, Katarzyna ; Kościelniak, Janusz ; Iwanicka-Nowicka, Roksana ; Buza, Krisztián ; Janowiak, Franciszek ; Żmuda, Katarzyna ; Jõesaar, Indrek ; Laskowska-Kaszub, Katarzyna ; Fogtman, Anna ; Kollist, Hannes ; Zielenkiewicz, Piotr ; Tiuryn, Jerzy ; Siedlecki, Paweł ; Swiezewski, Szymon ; Ginalski, Krzysztof ; Koblowska, Marta ; Archacki, Rafał ; Wilczynski, Bartek ; Rapacz, Marcin ; Jerzmanowski, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-6739e139b35ee8809ede71a1775ac5c794662094dda4fecba21f0443488301793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abscisic Acid - metabolism</topic><topic>Adaptation, Physiological</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis - radiation effects</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>Drought</topic><topic>Droughts</topic><topic>Epigenesis, Genetic</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>GENES, DEVELOPMENT, AND EVOLUTION</topic><topic>Genes, Reporter</topic><topic>Guard cells</topic><topic>Heterochromatin - genetics</topic><topic>Heterochromatin - metabolism</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Leaves</topic><topic>Light</topic><topic>Methylation</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Stress, Physiological</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rutowicz, Kinga</creatorcontrib><creatorcontrib>Puzio, Marcin</creatorcontrib><creatorcontrib>Halibart-Puzio, Joanna</creatorcontrib><creatorcontrib>Lirski, Maciej</creatorcontrib><creatorcontrib>Kotliński, Maciej</creatorcontrib><creatorcontrib>Kroteń, Magdalena A.</creatorcontrib><creatorcontrib>Knizewski, Lukasz</creatorcontrib><creatorcontrib>Lange, Bartosz</creatorcontrib><creatorcontrib>Muszewska, Anna</creatorcontrib><creatorcontrib>Śniegowska-Świerk, Katarzyna</creatorcontrib><creatorcontrib>Kościelniak, Janusz</creatorcontrib><creatorcontrib>Iwanicka-Nowicka, Roksana</creatorcontrib><creatorcontrib>Buza, Krisztián</creatorcontrib><creatorcontrib>Janowiak, Franciszek</creatorcontrib><creatorcontrib>Żmuda, Katarzyna</creatorcontrib><creatorcontrib>Jõesaar, Indrek</creatorcontrib><creatorcontrib>Laskowska-Kaszub, Katarzyna</creatorcontrib><creatorcontrib>Fogtman, Anna</creatorcontrib><creatorcontrib>Kollist, Hannes</creatorcontrib><creatorcontrib>Zielenkiewicz, Piotr</creatorcontrib><creatorcontrib>Tiuryn, Jerzy</creatorcontrib><creatorcontrib>Siedlecki, Paweł</creatorcontrib><creatorcontrib>Swiezewski, Szymon</creatorcontrib><creatorcontrib>Ginalski, Krzysztof</creatorcontrib><creatorcontrib>Koblowska, Marta</creatorcontrib><creatorcontrib>Archacki, Rafał</creatorcontrib><creatorcontrib>Wilczynski, Bartek</creatorcontrib><creatorcontrib>Rapacz, Marcin</creatorcontrib><creatorcontrib>Jerzmanowski, Andrzej</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rutowicz, Kinga</au><au>Puzio, Marcin</au><au>Halibart-Puzio, Joanna</au><au>Lirski, Maciej</au><au>Kotliński, Maciej</au><au>Kroteń, Magdalena A.</au><au>Knizewski, Lukasz</au><au>Lange, Bartosz</au><au>Muszewska, Anna</au><au>Śniegowska-Świerk, Katarzyna</au><au>Kościelniak, Janusz</au><au>Iwanicka-Nowicka, Roksana</au><au>Buza, Krisztián</au><au>Janowiak, Franciszek</au><au>Żmuda, Katarzyna</au><au>Jõesaar, Indrek</au><au>Laskowska-Kaszub, Katarzyna</au><au>Fogtman, Anna</au><au>Kollist, Hannes</au><au>Zielenkiewicz, Piotr</au><au>Tiuryn, Jerzy</au><au>Siedlecki, Paweł</au><au>Swiezewski, Szymon</au><au>Ginalski, Krzysztof</au><au>Koblowska, Marta</au><au>Archacki, Rafał</au><au>Wilczynski, Bartek</au><au>Rapacz, Marcin</au><au>Jerzmanowski, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>169</volume><issue>3</issue><spage>2080</spage><epage>2101</epage><pages>2080-2101</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass ofminor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stress-inducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses ofh1.3null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription.We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>26351307</pmid><doi>10.1104/pp.15.00493</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-4684-4503</orcidid><orcidid>https://orcid.org/0000-0002-5331-7840</orcidid><orcidid>https://orcid.org/0000-0002-8115-1649</orcidid><orcidid>https://orcid.org/0000-0002-7111-6452</orcidid><orcidid>https://orcid.org/0000-0003-1071-1159</orcidid><orcidid>https://orcid.org/0000-0002-1095-8998</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2015-11, Vol.169 (3), p.2080-2101 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_1730681296 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Abscisic Acid - metabolism Adaptation, Physiological Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - physiology Arabidopsis - radiation effects Chromatin Chromatin - genetics Chromatin - metabolism DNA DNA Methylation Drought Droughts Epigenesis, Genetic Gene Expression Regulation, Plant Genes GENES, DEVELOPMENT, AND EVOLUTION Genes, Reporter Guard cells Heterochromatin - genetics Heterochromatin - metabolism Histones Histones - genetics Histones - metabolism Leaves Light Methylation Plant Growth Regulators - metabolism Plant Proteins - genetics Plant Proteins - metabolism Plants Stress, Physiological Transposons |
title | A Specialized Histone H1 Variant Is Required for Adaptive Responses to Complex Abiotic Stress and Related DNA Methylation in Arabidopsis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Specialized%20Histone%20H1%20Variant%20Is%20Required%20for%20Adaptive%20Responses%20to%20Complex%20Abiotic%20Stress%20and%20Related%20DNA%20Methylation%20in%20Arabidopsis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Rutowicz,%20Kinga&rft.date=2015-11-01&rft.volume=169&rft.issue=3&rft.spage=2080&rft.epage=2101&rft.pages=2080-2101&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.15.00493&rft_dat=%3Cjstor_proqu%3E24807346%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-6739e139b35ee8809ede71a1775ac5c794662094dda4fecba21f0443488301793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1730681296&rft_id=info:pmid/26351307&rft_jstor_id=24807346&rfr_iscdi=true |