Loading…

Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins

The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to com...

Full description

Saved in:
Bibliographic Details
Published in:Journal of proteome research 2015-11, Vol.14 (11), p.4564-4570
Main Authors: Suomi, Tomi, Corthals, Garry L, Nevalainen, Olli S, Elo, Laura L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3
cites cdi_FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3
container_end_page 4570
container_issue 11
container_start_page 4564
container_title Journal of proteome research
container_volume 14
creator Suomi, Tomi
Corthals, Garry L
Nevalainen, Olli S
Elo, Laura L
description The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.
doi_str_mv 10.1021/acs.jproteome.5b00363
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1731783580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1731783580</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCaAs2aTYcRzbS9SWh1SJStB15NhjlCqPYjuI_j0pabtlNbM4947mIHRL8JTghDwo7aebrWsDtDVMWYExzegZGhNGWUwl5ufHXUg6QlfebzAmjGN6iUZJRgWWKRmj97Uvm89oBdtQGoiX8A1VtBpqS-2juQoqsq2L5hBAhz07L60FB00oVVXtosXP1oH3YIZY2fhrdGFV5eHmMCdo_bT4mL3Ey7fn19njMlZUihBDYbUtuMTECpkJYVnKNS2koVgWLGMJ14bJVADN0swkmheWJAZExq3m2Cg6QfdDb6_hqwMf8rr0GqpKNdB2PiecEi4oE7hH2YBq13rvwOZbV9bK7XKC873PvPeZn3zmB5997u5woitqMKfUUWAPkAH4y7eda_qP_yn9BQvqhwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731783580</pqid></control><display><type>article</type><title>Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Suomi, Tomi ; Corthals, Garry L ; Nevalainen, Olli S ; Elo, Laura L</creator><creatorcontrib>Suomi, Tomi ; Corthals, Garry L ; Nevalainen, Olli S ; Elo, Laura L</creatorcontrib><description>The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.5b00363</identifier><identifier>PMID: 26380941</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Gene Expression Regulation ; Internet ; Peptide Fragments - analysis ; Peptide Fragments - genetics ; Peptide Fragments - metabolism ; Proteins - genetics ; Proteins - metabolism ; Proteolysis ; Proteomics - methods ; Sensitivity and Specificity ; Software ; Trypsin - chemistry</subject><ispartof>Journal of proteome research, 2015-11, Vol.14 (11), p.4564-4570</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3</citedby><cites>FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26380941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suomi, Tomi</creatorcontrib><creatorcontrib>Corthals, Garry L</creatorcontrib><creatorcontrib>Nevalainen, Olli S</creatorcontrib><creatorcontrib>Elo, Laura L</creatorcontrib><title>Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.</description><subject>Gene Expression Regulation</subject><subject>Internet</subject><subject>Peptide Fragments - analysis</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - metabolism</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Proteolysis</subject><subject>Proteomics - methods</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><subject>Trypsin - chemistry</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqXwCaAs2aTYcRzbS9SWh1SJStB15NhjlCqPYjuI_j0pabtlNbM4947mIHRL8JTghDwo7aebrWsDtDVMWYExzegZGhNGWUwl5ufHXUg6QlfebzAmjGN6iUZJRgWWKRmj97Uvm89oBdtQGoiX8A1VtBpqS-2juQoqsq2L5hBAhz07L60FB00oVVXtosXP1oH3YIZY2fhrdGFV5eHmMCdo_bT4mL3Ey7fn19njMlZUihBDYbUtuMTECpkJYVnKNS2koVgWLGMJ14bJVADN0swkmheWJAZExq3m2Cg6QfdDb6_hqwMf8rr0GqpKNdB2PiecEi4oE7hH2YBq13rvwOZbV9bK7XKC873PvPeZn3zmB5997u5woitqMKfUUWAPkAH4y7eda_qP_yn9BQvqhwk</recordid><startdate>20151106</startdate><enddate>20151106</enddate><creator>Suomi, Tomi</creator><creator>Corthals, Garry L</creator><creator>Nevalainen, Olli S</creator><creator>Elo, Laura L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151106</creationdate><title>Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins</title><author>Suomi, Tomi ; Corthals, Garry L ; Nevalainen, Olli S ; Elo, Laura L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Gene Expression Regulation</topic><topic>Internet</topic><topic>Peptide Fragments - analysis</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - metabolism</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Proteolysis</topic><topic>Proteomics - methods</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><topic>Trypsin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suomi, Tomi</creatorcontrib><creatorcontrib>Corthals, Garry L</creatorcontrib><creatorcontrib>Nevalainen, Olli S</creatorcontrib><creatorcontrib>Elo, Laura L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suomi, Tomi</au><au>Corthals, Garry L</au><au>Nevalainen, Olli S</au><au>Elo, Laura L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2015-11-06</date><risdate>2015</risdate><volume>14</volume><issue>11</issue><spage>4564</spage><epage>4570</epage><pages>4564-4570</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26380941</pmid><doi>10.1021/acs.jproteome.5b00363</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2015-11, Vol.14 (11), p.4564-4570
issn 1535-3893
1535-3907
language eng
recordid cdi_proquest_miscellaneous_1731783580
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Gene Expression Regulation
Internet
Peptide Fragments - analysis
Peptide Fragments - genetics
Peptide Fragments - metabolism
Proteins - genetics
Proteins - metabolism
Proteolysis
Proteomics - methods
Sensitivity and Specificity
Software
Trypsin - chemistry
title Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Peptide-Level%20Proteomics%20Data%20for%20Detecting%20Differentially%20Expressed%20Proteins&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Suomi,%20Tomi&rft.date=2015-11-06&rft.volume=14&rft.issue=11&rft.spage=4564&rft.epage=4570&rft.pages=4564-4570&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.5b00363&rft_dat=%3Cproquest_cross%3E1731783580%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1731783580&rft_id=info:pmid/26380941&rfr_iscdi=true