Loading…
Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins
The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to com...
Saved in:
Published in: | Journal of proteome research 2015-11, Vol.14 (11), p.4564-4570 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3 |
---|---|
cites | cdi_FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3 |
container_end_page | 4570 |
container_issue | 11 |
container_start_page | 4564 |
container_title | Journal of proteome research |
container_volume | 14 |
creator | Suomi, Tomi Corthals, Garry L Nevalainen, Olli S Elo, Laura L |
description | The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org. |
doi_str_mv | 10.1021/acs.jproteome.5b00363 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1731783580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1731783580</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCaAs2aTYcRzbS9SWh1SJStB15NhjlCqPYjuI_j0pabtlNbM4947mIHRL8JTghDwo7aebrWsDtDVMWYExzegZGhNGWUwl5ufHXUg6QlfebzAmjGN6iUZJRgWWKRmj97Uvm89oBdtQGoiX8A1VtBpqS-2juQoqsq2L5hBAhz07L60FB00oVVXtosXP1oH3YIZY2fhrdGFV5eHmMCdo_bT4mL3Ey7fn19njMlZUihBDYbUtuMTECpkJYVnKNS2koVgWLGMJ14bJVADN0swkmheWJAZExq3m2Cg6QfdDb6_hqwMf8rr0GqpKNdB2PiecEi4oE7hH2YBq13rvwOZbV9bK7XKC873PvPeZn3zmB5997u5woitqMKfUUWAPkAH4y7eda_qP_yn9BQvqhwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731783580</pqid></control><display><type>article</type><title>Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Suomi, Tomi ; Corthals, Garry L ; Nevalainen, Olli S ; Elo, Laura L</creator><creatorcontrib>Suomi, Tomi ; Corthals, Garry L ; Nevalainen, Olli S ; Elo, Laura L</creatorcontrib><description>The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.5b00363</identifier><identifier>PMID: 26380941</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Gene Expression Regulation ; Internet ; Peptide Fragments - analysis ; Peptide Fragments - genetics ; Peptide Fragments - metabolism ; Proteins - genetics ; Proteins - metabolism ; Proteolysis ; Proteomics - methods ; Sensitivity and Specificity ; Software ; Trypsin - chemistry</subject><ispartof>Journal of proteome research, 2015-11, Vol.14 (11), p.4564-4570</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3</citedby><cites>FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26380941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suomi, Tomi</creatorcontrib><creatorcontrib>Corthals, Garry L</creatorcontrib><creatorcontrib>Nevalainen, Olli S</creatorcontrib><creatorcontrib>Elo, Laura L</creatorcontrib><title>Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.</description><subject>Gene Expression Regulation</subject><subject>Internet</subject><subject>Peptide Fragments - analysis</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - metabolism</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Proteolysis</subject><subject>Proteomics - methods</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><subject>Trypsin - chemistry</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqXwCaAs2aTYcRzbS9SWh1SJStB15NhjlCqPYjuI_j0pabtlNbM4947mIHRL8JTghDwo7aebrWsDtDVMWYExzegZGhNGWUwl5ufHXUg6QlfebzAmjGN6iUZJRgWWKRmj97Uvm89oBdtQGoiX8A1VtBpqS-2juQoqsq2L5hBAhz07L60FB00oVVXtosXP1oH3YIZY2fhrdGFV5eHmMCdo_bT4mL3Ey7fn19njMlZUihBDYbUtuMTECpkJYVnKNS2koVgWLGMJ14bJVADN0swkmheWJAZExq3m2Cg6QfdDb6_hqwMf8rr0GqpKNdB2PiecEi4oE7hH2YBq13rvwOZbV9bK7XKC873PvPeZn3zmB5997u5woitqMKfUUWAPkAH4y7eda_qP_yn9BQvqhwk</recordid><startdate>20151106</startdate><enddate>20151106</enddate><creator>Suomi, Tomi</creator><creator>Corthals, Garry L</creator><creator>Nevalainen, Olli S</creator><creator>Elo, Laura L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151106</creationdate><title>Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins</title><author>Suomi, Tomi ; Corthals, Garry L ; Nevalainen, Olli S ; Elo, Laura L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Gene Expression Regulation</topic><topic>Internet</topic><topic>Peptide Fragments - analysis</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - metabolism</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Proteolysis</topic><topic>Proteomics - methods</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><topic>Trypsin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suomi, Tomi</creatorcontrib><creatorcontrib>Corthals, Garry L</creatorcontrib><creatorcontrib>Nevalainen, Olli S</creatorcontrib><creatorcontrib>Elo, Laura L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suomi, Tomi</au><au>Corthals, Garry L</au><au>Nevalainen, Olli S</au><au>Elo, Laura L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2015-11-06</date><risdate>2015</risdate><volume>14</volume><issue>11</issue><spage>4564</spage><epage>4570</epage><pages>4564-4570</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26380941</pmid><doi>10.1021/acs.jproteome.5b00363</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2015-11, Vol.14 (11), p.4564-4570 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_proquest_miscellaneous_1731783580 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Gene Expression Regulation Internet Peptide Fragments - analysis Peptide Fragments - genetics Peptide Fragments - metabolism Proteins - genetics Proteins - metabolism Proteolysis Proteomics - methods Sensitivity and Specificity Software Trypsin - chemistry |
title | Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Peptide-Level%20Proteomics%20Data%20for%20Detecting%20Differentially%20Expressed%20Proteins&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Suomi,%20Tomi&rft.date=2015-11-06&rft.volume=14&rft.issue=11&rft.spage=4564&rft.epage=4570&rft.pages=4564-4570&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.5b00363&rft_dat=%3Cproquest_cross%3E1731783580%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a398t-ebfcfb7901f89688f547c3b9d309b56527cd5948e3646d2c7bf12de867fc70da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1731783580&rft_id=info:pmid/26380941&rfr_iscdi=true |