Loading…
A classical force field for tetrahedral oxyanions developed using hydration properties: The examples of pertechnetate (TcO4(-)) and sulfate (SO4(2-))
Radioactive pertechnetate, (99)TcO4(-), is one of the most problematic ionic species in the context of the clean up and storage of nuclear waste. Molecular simulations can be used to understand the behavior of TcO4(-) in dilute aqueous solutions, providing reliable potentials are available. This wor...
Saved in:
Published in: | The Journal of chemical physics 2015-11, Vol.143 (17), p.174502-174502 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-c98c9d2de2f549815f1a0508565feb6bc62ca91d9cae0d876e4ab29522ff4683 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-c98c9d2de2f549815f1a0508565feb6bc62ca91d9cae0d876e4ab29522ff4683 |
container_end_page | 174502 |
container_issue | 17 |
container_start_page | 174502 |
container_title | The Journal of chemical physics |
container_volume | 143 |
creator | Williams, Christopher D Carbone, Paola |
description | Radioactive pertechnetate, (99)TcO4(-), is one of the most problematic ionic species in the context of the clean up and storage of nuclear waste. Molecular simulations can be used to understand the behavior of TcO4(-) in dilute aqueous solutions, providing reliable potentials are available. This work outlines the development of a new potential model for TcO4(-) and competing SO4(2-), optimized using their hydration properties, such as the Gibbs hydration free energy (calculated using Bennett's acceptance ratio method). The findings show that the TcO4(-) oxyanion has a very low hydration free energy (-202 kJ mol(-1)) compared to other anions (Cl(-), I(-), SO4(2-)) leading to fast water exchange dynamics and explaining its observed high mobility in the aqueous environment. Its hydrated structure, investigated using ion-water radial distribution functions, shows that it is unique amongst the other anions in that it does not possess well-defined hydration shells. Since contaminants and ubiquitous species in the aqueous environment are often present as tetrahedral oxyanions, it is proposed that the approach could easily be extended to a whole host of other species. |
doi_str_mv | 10.1063/1.4934964 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1732308013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123811023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-c98c9d2de2f549815f1a0508565feb6bc62ca91d9cae0d876e4ab29522ff4683</originalsourceid><addsrcrecordid>eNpdkUFP3DAQha2qVdnSHvgDyFIvu4fQGcdxYm4IQVsJiUP3HnntMRvkTRY7QewP4f_ihaUHTjN679PTkx5jJwhnCKr8hWdSl1Ir-YnNEBpd1ErDZzYDEFhoBeqIfUvpHgCwFvIrOxKqkjXWOGPPF9wGk1JnTeB-iJa47yi4_c9HGqNZk4vZG552pu-GPnFHjxSGLTk-pa6_4-tdBsZs8W3Mchw7Sud8uSZOT2azDZT44PneILvuaTQj8fnS3sp5sVhw0zuepuBf1X9ZFFn9zr54ExL9ONxjtry-Wl7-KW5uf_-9vLgprEQ5FlY3VjvhSPhK6gYrjwYqaCpVeVqplVXCGo1OW0PgmlqRNCuhKyG8l6opj9n8LTYXf5goje2mS5ZCMD0NU2qxLkUJDWCZ0Z8f0Pthin0u1woUZYMIYk8t3igbh5Qi-XYbu42Juxah3U_VYnuYKrOnh8RptSH3n3zfpnwBWp-NJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123811023</pqid></control><display><type>article</type><title>A classical force field for tetrahedral oxyanions developed using hydration properties: The examples of pertechnetate (TcO4(-)) and sulfate (SO4(2-))</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Williams, Christopher D ; Carbone, Paola</creator><creatorcontrib>Williams, Christopher D ; Carbone, Paola</creatorcontrib><description>Radioactive pertechnetate, (99)TcO4(-), is one of the most problematic ionic species in the context of the clean up and storage of nuclear waste. Molecular simulations can be used to understand the behavior of TcO4(-) in dilute aqueous solutions, providing reliable potentials are available. This work outlines the development of a new potential model for TcO4(-) and competing SO4(2-), optimized using their hydration properties, such as the Gibbs hydration free energy (calculated using Bennett's acceptance ratio method). The findings show that the TcO4(-) oxyanion has a very low hydration free energy (-202 kJ mol(-1)) compared to other anions (Cl(-), I(-), SO4(2-)) leading to fast water exchange dynamics and explaining its observed high mobility in the aqueous environment. Its hydrated structure, investigated using ion-water radial distribution functions, shows that it is unique amongst the other anions in that it does not possess well-defined hydration shells. Since contaminants and ubiquitous species in the aqueous environment are often present as tetrahedral oxyanions, it is proposed that the approach could easily be extended to a whole host of other species.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4934964</identifier><identifier>PMID: 26547171</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anion exchanging ; Aqueous environments ; Computer simulation ; Contaminants ; Distribution functions ; Free energy ; Hydration ; Physics ; Radial distribution ; Radioactive wastes</subject><ispartof>The Journal of chemical physics, 2015-11, Vol.143 (17), p.174502-174502</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-c98c9d2de2f549815f1a0508565feb6bc62ca91d9cae0d876e4ab29522ff4683</citedby><cites>FETCH-LOGICAL-c414t-c98c9d2de2f549815f1a0508565feb6bc62ca91d9cae0d876e4ab29522ff4683</cites><orcidid>0000-0001-9927-8376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26547171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Christopher D</creatorcontrib><creatorcontrib>Carbone, Paola</creatorcontrib><title>A classical force field for tetrahedral oxyanions developed using hydration properties: The examples of pertechnetate (TcO4(-)) and sulfate (SO4(2-))</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Radioactive pertechnetate, (99)TcO4(-), is one of the most problematic ionic species in the context of the clean up and storage of nuclear waste. Molecular simulations can be used to understand the behavior of TcO4(-) in dilute aqueous solutions, providing reliable potentials are available. This work outlines the development of a new potential model for TcO4(-) and competing SO4(2-), optimized using their hydration properties, such as the Gibbs hydration free energy (calculated using Bennett's acceptance ratio method). The findings show that the TcO4(-) oxyanion has a very low hydration free energy (-202 kJ mol(-1)) compared to other anions (Cl(-), I(-), SO4(2-)) leading to fast water exchange dynamics and explaining its observed high mobility in the aqueous environment. Its hydrated structure, investigated using ion-water radial distribution functions, shows that it is unique amongst the other anions in that it does not possess well-defined hydration shells. Since contaminants and ubiquitous species in the aqueous environment are often present as tetrahedral oxyanions, it is proposed that the approach could easily be extended to a whole host of other species.</description><subject>Anion exchanging</subject><subject>Aqueous environments</subject><subject>Computer simulation</subject><subject>Contaminants</subject><subject>Distribution functions</subject><subject>Free energy</subject><subject>Hydration</subject><subject>Physics</subject><subject>Radial distribution</subject><subject>Radioactive wastes</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkUFP3DAQha2qVdnSHvgDyFIvu4fQGcdxYm4IQVsJiUP3HnntMRvkTRY7QewP4f_ihaUHTjN679PTkx5jJwhnCKr8hWdSl1Ir-YnNEBpd1ErDZzYDEFhoBeqIfUvpHgCwFvIrOxKqkjXWOGPPF9wGk1JnTeB-iJa47yi4_c9HGqNZk4vZG552pu-GPnFHjxSGLTk-pa6_4-tdBsZs8W3Mchw7Sud8uSZOT2azDZT44PneILvuaTQj8fnS3sp5sVhw0zuepuBf1X9ZFFn9zr54ExL9ONxjtry-Wl7-KW5uf_-9vLgprEQ5FlY3VjvhSPhK6gYrjwYqaCpVeVqplVXCGo1OW0PgmlqRNCuhKyG8l6opj9n8LTYXf5goje2mS5ZCMD0NU2qxLkUJDWCZ0Z8f0Pthin0u1woUZYMIYk8t3igbh5Qi-XYbu42Juxah3U_VYnuYKrOnh8RptSH3n3zfpnwBWp-NJQ</recordid><startdate>20151107</startdate><enddate>20151107</enddate><creator>Williams, Christopher D</creator><creator>Carbone, Paola</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9927-8376</orcidid></search><sort><creationdate>20151107</creationdate><title>A classical force field for tetrahedral oxyanions developed using hydration properties: The examples of pertechnetate (TcO4(-)) and sulfate (SO4(2-))</title><author>Williams, Christopher D ; Carbone, Paola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-c98c9d2de2f549815f1a0508565feb6bc62ca91d9cae0d876e4ab29522ff4683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anion exchanging</topic><topic>Aqueous environments</topic><topic>Computer simulation</topic><topic>Contaminants</topic><topic>Distribution functions</topic><topic>Free energy</topic><topic>Hydration</topic><topic>Physics</topic><topic>Radial distribution</topic><topic>Radioactive wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Christopher D</creatorcontrib><creatorcontrib>Carbone, Paola</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Christopher D</au><au>Carbone, Paola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A classical force field for tetrahedral oxyanions developed using hydration properties: The examples of pertechnetate (TcO4(-)) and sulfate (SO4(2-))</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2015-11-07</date><risdate>2015</risdate><volume>143</volume><issue>17</issue><spage>174502</spage><epage>174502</epage><pages>174502-174502</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Radioactive pertechnetate, (99)TcO4(-), is one of the most problematic ionic species in the context of the clean up and storage of nuclear waste. Molecular simulations can be used to understand the behavior of TcO4(-) in dilute aqueous solutions, providing reliable potentials are available. This work outlines the development of a new potential model for TcO4(-) and competing SO4(2-), optimized using their hydration properties, such as the Gibbs hydration free energy (calculated using Bennett's acceptance ratio method). The findings show that the TcO4(-) oxyanion has a very low hydration free energy (-202 kJ mol(-1)) compared to other anions (Cl(-), I(-), SO4(2-)) leading to fast water exchange dynamics and explaining its observed high mobility in the aqueous environment. Its hydrated structure, investigated using ion-water radial distribution functions, shows that it is unique amongst the other anions in that it does not possess well-defined hydration shells. Since contaminants and ubiquitous species in the aqueous environment are often present as tetrahedral oxyanions, it is proposed that the approach could easily be extended to a whole host of other species.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26547171</pmid><doi>10.1063/1.4934964</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9927-8376</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2015-11, Vol.143 (17), p.174502-174502 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1732308013 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Anion exchanging Aqueous environments Computer simulation Contaminants Distribution functions Free energy Hydration Physics Radial distribution Radioactive wastes |
title | A classical force field for tetrahedral oxyanions developed using hydration properties: The examples of pertechnetate (TcO4(-)) and sulfate (SO4(2-)) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20classical%20force%20field%20for%20tetrahedral%20oxyanions%20developed%20using%20hydration%20properties:%20The%20examples%20of%20pertechnetate%20(TcO4(-))%20and%20sulfate%20(SO4(2-))&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Williams,%20Christopher%20D&rft.date=2015-11-07&rft.volume=143&rft.issue=17&rft.spage=174502&rft.epage=174502&rft.pages=174502-174502&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4934964&rft_dat=%3Cproquest_cross%3E2123811023%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-c98c9d2de2f549815f1a0508565feb6bc62ca91d9cae0d876e4ab29522ff4683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2123811023&rft_id=info:pmid/26547171&rfr_iscdi=true |