Loading…
Reversal of mutualism in a leafflower-leafflower moth association: the possible driving role of a third-party partner
A major goal in the study of mutualism is to understand how co‐operation is maintained when mutualism may potentially turn into parasitism. Although certain mechanisms facilitate the persistence of mutualism, parasitic species have repeatedly evolved from mutualistic ancestors. However, documented e...
Saved in:
Published in: | Biological journal of the Linnean Society 2015-11, Vol.116 (3), p.507-518 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A major goal in the study of mutualism is to understand how co‐operation is maintained when mutualism may potentially turn into parasitism. Although certain mechanisms facilitate the persistence of mutualism, parasitic species have repeatedly evolved from mutualistic ancestors. However, documented examples of mutualism reversals are still rare. Leafflowers (Phyllantheae; Phyllanthaceae) include approximately 500 species that engage in obligate mutualism with leafflower moths (Epicephala; Gracillariidae), which actively pollinate flowers, and whose larvae feed on the resulting seeds. We found that the Taiwanese population of the Phyllanthus reticulatus species complex was associated with six sympatric Epicephala species, of which three were derived parasites that induced gall formation on flowers/buds and produced no seeds. Notably, two parasitic species have retained mutualistic pollination behaviour, suggesting that the parasitism was likely not selected for to reduce the cost of mutualism. We propose that the galling habit evolved as an adaptation to escape parasitism by a specialized braconid wasp. The tough gall produced by one species was almost free of braconid parasitism, and the swollen gall induced by the other species probably prevents attack as a result of the larger airspace inside the gall. Our findings suggest that the presence of a third‐party partner can greatly influence the evolutionary fate of mutualisms, regardless of whether the pairwise interaction continues to favour co‐operation. |
---|---|
ISSN: | 0024-4066 1095-8312 |
DOI: | 10.1111/bij.12633 |