Loading…

The regulatory interaction of EVI1 with the TCL1A oncogene impacts cell survival and clinical outcome in CLL

Dysregulated T-cell leukemia/lymphoma-1A (TCL1A), a modulator in B-cell receptor (BCR) signaling, is causally implicated in chronic lymphocytic leukemia (CLL). However, the mechanisms of the perturbed TCL1A regulation are largely unknown. To characterize TCL1A-upstream networks, we functionally scre...

Full description

Saved in:
Bibliographic Details
Published in:Leukemia 2015-10, Vol.29 (10), p.2003-2014
Main Authors: Vasyutina, E, Boucas, J M, Bloehdorn, J, Aszyk, C, Crispatzu, G, Stiefelhagen, M, Breuer, A, Mayer, P, Lengerke, C, Döhner, H, Beutner, D, Rosenwald, A, Stilgenbauer, S, Hallek, M, Benner, A, Herling, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dysregulated T-cell leukemia/lymphoma-1A (TCL1A), a modulator in B-cell receptor (BCR) signaling, is causally implicated in chronic lymphocytic leukemia (CLL). However, the mechanisms of the perturbed TCL1A regulation are largely unknown. To characterize TCL1A-upstream networks, we functionally screened for TCL1A-repressive micro-RNAs (miRs) and their transcriptional regulators. We identified the novel miR-484 to target TCL1A’s 3′-UTR and to be downregulated in CLL. In chromatin immunoprecipitations and reporter assays, the oncogenic transcription factor of myeloid cells, EVI1, bound and activated the miR-484 promoter. Most common in CLL was a pan-EVI1 transcript variant. EVI1 protein expression revealed distinct normal-tissue and leukemia-associated patterns of EVI1/TCL1A co-regulation. EVI1 levels were particularly low in TCL1A-high CLL or such cellular subsets. Global gene expression profiles from a 337-patient set linked EVI1 networks to BCR signaling and cell survival via TCL1A, BTK and other molecules of relevance in CLL. Enforced EVI1, as did miR-484, repressed TCL1A. Furthermore, it reduced phospho-kinase levels, impaired cell survival, mitigated BCR-induced Ca-flux and diminished the in vitro ibrutinib response. Moreover, TCL1A and EVI1 showed a strongly interactive hazard prediction in prospectively treated patients. Overall, we present regressive EVI1 as a novel regulatory signature in CLL. Through enhanced TCL1A and other EVI1-targeted hallmarks of CLL, this contributes to an aggressive cellular and clinical phenotype.
ISSN:0887-6924
1476-5551
DOI:10.1038/leu.2015.114