Loading…

Osteogenic priming of mesenchymal stem cells by chondrocyte-conditioned factors and mineralized matrix

Transient cartilage and a mineralizing microenvironment play pivotal roles in mesenchymal cell ossification during bone formation. In order to recreate these microenvironmental cues, C3H10T1/2 murine mesenchymal stem cells (MSCs) were exposed to chondrocyte-conditioned medium (CM) and seeded onto th...

Full description

Saved in:
Bibliographic Details
Published in:Cell and tissue research 2015-10, Vol.362 (1), p.115-126
Main Authors: Ro, Hyunuk, Park, Jungha, Yang, Kisuk, Kim, Jiyong, Yim, Hyun-Gu, Jung, Giyoung, Lee, Hyukjin, Cho, Seung-Woo, Hwang, Nathaniel S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transient cartilage and a mineralizing microenvironment play pivotal roles in mesenchymal cell ossification during bone formation. In order to recreate these microenvironmental cues, C3H10T1/2 murine mesenchymal stem cells (MSCs) were exposed to chondrocyte-conditioned medium (CM) and seeded onto three-dimensional mineralized scaffolds for bone regeneration. Expansion of C3H10T1/2 cells with CM resulted in enhanced expression levels of chondrogenic markers such as aggrecan, type II collagen, type X collagen, and Sox9, rather than of osteogenic genes. Interestingly, CM expansion led to reduced expression levels of osteogenic genes such as alkaline phosphatase (ALP), type I collagen, osteocalcin, and Runx2. However, CM-expanded C3H10T1/2 cells showed enhanced osteogenic differentiation as indicated by increased ALP and Alizarin Red S staining upon osteogenic factor exposure. In vivo, CM-expanded C3H10T1/2 mesenchymal cells were seeded onto mineralized scaffolds (fabricated with polydopamine and coated with simulated body fluids) and implanted into critical-sized calvarial-defect mouse models. After 8 weeks of implantation, mouse skulls were collected, and bone tissue regeneration was evaluated by micro-computed tumography and Masson’s trichrome staining. In accordance with the in vitro analysis, CM-expanded C3H10T1/2 cells gave enhanced bone mineral deposition. Thus, chondrocyte-conditioned factors and a mineralized microenvironment stimulate the bone formation of MSCs.
ISSN:0302-766X
1432-0878
DOI:10.1007/s00441-015-2195-7