Loading…
DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND
Skeletal remains of woolly mammoths have been studied using polarizing microscopy, SEM, XRD, and FTIR to characterize their diagenetic history. Formation of different secondary minerals in the bones is related to changing conditions of chemical diagenesis, both in the sediment and in the bone itself...
Saved in:
Published in: | Palaios 2012-08, Vol.27 (8), p.541-549 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a402t-190a7708ff60b435a4ac77f19ed8c6f13c05f73966fdc5de309e8b754314396d3 |
---|---|
cites | |
container_end_page | 549 |
container_issue | 8 |
container_start_page | 541 |
container_title | Palaios |
container_volume | 27 |
creator | ROGOZ, ANNA SAWLOWICZ, ZBIGNIEW WOJTAL, PIOTR |
description | Skeletal remains of woolly mammoths have been studied using polarizing microscopy, SEM, XRD, and FTIR to characterize their diagenetic history. Formation of different secondary minerals in the bones is related to changing conditions of chemical diagenesis, both in the sediment and in the bone itself. Bone voids are commonly infilled with calcite and/or carbonate sediment, and dentinal tubules are coated or infilled with secondary apatite. The latter may have formed during the life of the organism. Some osteocyte lacunae were observed to be coated with Fe-Mn (hydroxy)oxides. The average hydroxylapatite Ca/P ratios are higher (1.78–2.10) than in stoichiometric hydroxylapatite. Hydroxylapatite crystallinity indices are generally low at 0.06–0.12, as expected for the young bones. Some of the bones are partly altered by microbial attack. Different postdepositional events affecting the bones (recrystallization of apatite, bacterial alterations, mineral and sediment infillings and cracking) were distinguished and their succession proposed. |
doi_str_mv | 10.2110/palo.2011.p11-115r |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1732836638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41692729</jstor_id><sourcerecordid>41692729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-190a7708ff60b435a4ac77f19ed8c6f13c05f73966fdc5de309e8b754314396d3</originalsourceid><addsrcrecordid>eNqNkdtq2zAYx83YYFm3FxgMdJmyOdPB8uFSdZTazI6CrVC6G-HY8khIo8xKGH2Svu5kXHa9K33of5A-fp73GcEFRgh-PzdHs8AQocUZIR8hOrzxZighsU8JJm-9GYxj4iNC0Xvvg7UHCBGFFM-8l2XO7vmayzwFWV5LUT0CsQIPQhTFIyhZWQqZgfk4bGW2rcGmysvcJfJtfQvqH7zgkhWg4iXL1zVYVaIEMuOAVWnGuCjEfZ46vc4lB2nFUvEA6g1b_nRPMVDLinMJ5ne330AtXD-v1mAjCrZefvTe9c3R6k-v5423XXGZZv5ro98EEF98lMAmimDc9yHcBYQ2QdNGUY8S3cVt2CPSQtpHJAnDvmtppwlMdLyLaEBQ4G47cuPNp97zYH5ftb2op71t9fHYnLS5WoUigmMShiR2VjxZ28FYO-henYf9UzM8KwTVSEGNFNRIQTkKaqTgQl-m0MFezPAvEaAwwRFOnP510n9pY9u9PrX6jxmOnTqY63Bym499WMEEUhg4N5zcu70xJ_0_H_gL8dyX_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732836638</pqid></control><display><type>article</type><title>DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND</title><source>JSTOR</source><creator>ROGOZ, ANNA ; SAWLOWICZ, ZBIGNIEW ; WOJTAL, PIOTR</creator><creatorcontrib>ROGOZ, ANNA ; SAWLOWICZ, ZBIGNIEW ; WOJTAL, PIOTR</creatorcontrib><description>Skeletal remains of woolly mammoths have been studied using polarizing microscopy, SEM, XRD, and FTIR to characterize their diagenetic history. Formation of different secondary minerals in the bones is related to changing conditions of chemical diagenesis, both in the sediment and in the bone itself. Bone voids are commonly infilled with calcite and/or carbonate sediment, and dentinal tubules are coated or infilled with secondary apatite. The latter may have formed during the life of the organism. Some osteocyte lacunae were observed to be coated with Fe-Mn (hydroxy)oxides. The average hydroxylapatite Ca/P ratios are higher (1.78–2.10) than in stoichiometric hydroxylapatite. Hydroxylapatite crystallinity indices are generally low at 0.06–0.12, as expected for the young bones. Some of the bones are partly altered by microbial attack. Different postdepositional events affecting the bones (recrystallization of apatite, bacterial alterations, mineral and sediment infillings and cracking) were distinguished and their succession proposed.</description><identifier>ISSN: 0883-1351</identifier><identifier>EISSN: 1938-5323</identifier><identifier>DOI: 10.2110/palo.2011.p11-115r</identifier><language>eng</language><publisher>SEPM Society for Sedimentary Geology, 4111 S Darlington, Suite 100, Tulsa, OK 74135-6373, U.S.A: SEPM Society for Sedimentary Geology</publisher><subject>Apatites ; archaeological sites ; Bones ; Calcite ; Canals ; Carbonates ; Cenozoic ; Central Europe ; Chordata ; Cracow Poland ; Crystallinity ; diagenesis ; Diagenetic processes ; Elephantidae ; Elephantoidea ; Europe ; Eutheria ; FTIR spectra ; Histology ; hydroxylapatite ; infrared spectra ; Mammalia ; Mammuthus ; Mammuthus primigenius ; microstructure ; mineral composition ; Minerals ; Paleolithic ; Paleontology ; phosphates ; Pleistocene ; Poland ; Proboscidea ; Quaternary ; Research s ; Sediments ; SEM data ; Spadzista Street ; spectra ; Stone Age ; teeth ; Tetrapoda ; Theria ; upper Paleolithic ; upper Pleistocene ; Vertebrata ; vertebrate ; X-ray diffraction data</subject><ispartof>Palaios, 2012-08, Vol.27 (8), p.541-549</ispartof><rights>SEPM (Society for Sedimentary Geology)</rights><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by SEPM (Society for Sedimentary Geology) @Tulsa, OK @USA @United States</rights><rights>2012 SEPM (Society for Sedimentary Geology)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-190a7708ff60b435a4ac77f19ed8c6f13c05f73966fdc5de309e8b754314396d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41692729$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41692729$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>ROGOZ, ANNA</creatorcontrib><creatorcontrib>SAWLOWICZ, ZBIGNIEW</creatorcontrib><creatorcontrib>WOJTAL, PIOTR</creatorcontrib><title>DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND</title><title>Palaios</title><description>Skeletal remains of woolly mammoths have been studied using polarizing microscopy, SEM, XRD, and FTIR to characterize their diagenetic history. Formation of different secondary minerals in the bones is related to changing conditions of chemical diagenesis, both in the sediment and in the bone itself. Bone voids are commonly infilled with calcite and/or carbonate sediment, and dentinal tubules are coated or infilled with secondary apatite. The latter may have formed during the life of the organism. Some osteocyte lacunae were observed to be coated with Fe-Mn (hydroxy)oxides. The average hydroxylapatite Ca/P ratios are higher (1.78–2.10) than in stoichiometric hydroxylapatite. Hydroxylapatite crystallinity indices are generally low at 0.06–0.12, as expected for the young bones. Some of the bones are partly altered by microbial attack. Different postdepositional events affecting the bones (recrystallization of apatite, bacterial alterations, mineral and sediment infillings and cracking) were distinguished and their succession proposed.</description><subject>Apatites</subject><subject>archaeological sites</subject><subject>Bones</subject><subject>Calcite</subject><subject>Canals</subject><subject>Carbonates</subject><subject>Cenozoic</subject><subject>Central Europe</subject><subject>Chordata</subject><subject>Cracow Poland</subject><subject>Crystallinity</subject><subject>diagenesis</subject><subject>Diagenetic processes</subject><subject>Elephantidae</subject><subject>Elephantoidea</subject><subject>Europe</subject><subject>Eutheria</subject><subject>FTIR spectra</subject><subject>Histology</subject><subject>hydroxylapatite</subject><subject>infrared spectra</subject><subject>Mammalia</subject><subject>Mammuthus</subject><subject>Mammuthus primigenius</subject><subject>microstructure</subject><subject>mineral composition</subject><subject>Minerals</subject><subject>Paleolithic</subject><subject>Paleontology</subject><subject>phosphates</subject><subject>Pleistocene</subject><subject>Poland</subject><subject>Proboscidea</subject><subject>Quaternary</subject><subject>Research s</subject><subject>Sediments</subject><subject>SEM data</subject><subject>Spadzista Street</subject><subject>spectra</subject><subject>Stone Age</subject><subject>teeth</subject><subject>Tetrapoda</subject><subject>Theria</subject><subject>upper Paleolithic</subject><subject>upper Pleistocene</subject><subject>Vertebrata</subject><subject>vertebrate</subject><subject>X-ray diffraction data</subject><issn>0883-1351</issn><issn>1938-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkdtq2zAYx83YYFm3FxgMdJmyOdPB8uFSdZTazI6CrVC6G-HY8khIo8xKGH2Svu5kXHa9K33of5A-fp73GcEFRgh-PzdHs8AQocUZIR8hOrzxZighsU8JJm-9GYxj4iNC0Xvvg7UHCBGFFM-8l2XO7vmayzwFWV5LUT0CsQIPQhTFIyhZWQqZgfk4bGW2rcGmysvcJfJtfQvqH7zgkhWg4iXL1zVYVaIEMuOAVWnGuCjEfZ46vc4lB2nFUvEA6g1b_nRPMVDLinMJ5ne330AtXD-v1mAjCrZefvTe9c3R6k-v5423XXGZZv5ro98EEF98lMAmimDc9yHcBYQ2QdNGUY8S3cVt2CPSQtpHJAnDvmtppwlMdLyLaEBQ4G47cuPNp97zYH5ftb2op71t9fHYnLS5WoUigmMShiR2VjxZ28FYO-henYf9UzM8KwTVSEGNFNRIQTkKaqTgQl-m0MFezPAvEaAwwRFOnP510n9pY9u9PrX6jxmOnTqY63Bym499WMEEUhg4N5zcu70xJ_0_H_gL8dyX_Q</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>ROGOZ, ANNA</creator><creator>SAWLOWICZ, ZBIGNIEW</creator><creator>WOJTAL, PIOTR</creator><general>SEPM Society for Sedimentary Geology</general><general>Society for Sedimentary Geology</general><general>SEPM (Society for Sedimentary Geology)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope></search><sort><creationdate>201208</creationdate><title>DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND</title><author>ROGOZ, ANNA ; SAWLOWICZ, ZBIGNIEW ; WOJTAL, PIOTR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-190a7708ff60b435a4ac77f19ed8c6f13c05f73966fdc5de309e8b754314396d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Apatites</topic><topic>archaeological sites</topic><topic>Bones</topic><topic>Calcite</topic><topic>Canals</topic><topic>Carbonates</topic><topic>Cenozoic</topic><topic>Central Europe</topic><topic>Chordata</topic><topic>Cracow Poland</topic><topic>Crystallinity</topic><topic>diagenesis</topic><topic>Diagenetic processes</topic><topic>Elephantidae</topic><topic>Elephantoidea</topic><topic>Europe</topic><topic>Eutheria</topic><topic>FTIR spectra</topic><topic>Histology</topic><topic>hydroxylapatite</topic><topic>infrared spectra</topic><topic>Mammalia</topic><topic>Mammuthus</topic><topic>Mammuthus primigenius</topic><topic>microstructure</topic><topic>mineral composition</topic><topic>Minerals</topic><topic>Paleolithic</topic><topic>Paleontology</topic><topic>phosphates</topic><topic>Pleistocene</topic><topic>Poland</topic><topic>Proboscidea</topic><topic>Quaternary</topic><topic>Research s</topic><topic>Sediments</topic><topic>SEM data</topic><topic>Spadzista Street</topic><topic>spectra</topic><topic>Stone Age</topic><topic>teeth</topic><topic>Tetrapoda</topic><topic>Theria</topic><topic>upper Paleolithic</topic><topic>upper Pleistocene</topic><topic>Vertebrata</topic><topic>vertebrate</topic><topic>X-ray diffraction data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROGOZ, ANNA</creatorcontrib><creatorcontrib>SAWLOWICZ, ZBIGNIEW</creatorcontrib><creatorcontrib>WOJTAL, PIOTR</creatorcontrib><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><jtitle>Palaios</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROGOZ, ANNA</au><au>SAWLOWICZ, ZBIGNIEW</au><au>WOJTAL, PIOTR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND</atitle><jtitle>Palaios</jtitle><date>2012-08</date><risdate>2012</risdate><volume>27</volume><issue>8</issue><spage>541</spage><epage>549</epage><pages>541-549</pages><issn>0883-1351</issn><eissn>1938-5323</eissn><abstract>Skeletal remains of woolly mammoths have been studied using polarizing microscopy, SEM, XRD, and FTIR to characterize their diagenetic history. Formation of different secondary minerals in the bones is related to changing conditions of chemical diagenesis, both in the sediment and in the bone itself. Bone voids are commonly infilled with calcite and/or carbonate sediment, and dentinal tubules are coated or infilled with secondary apatite. The latter may have formed during the life of the organism. Some osteocyte lacunae were observed to be coated with Fe-Mn (hydroxy)oxides. The average hydroxylapatite Ca/P ratios are higher (1.78–2.10) than in stoichiometric hydroxylapatite. Hydroxylapatite crystallinity indices are generally low at 0.06–0.12, as expected for the young bones. Some of the bones are partly altered by microbial attack. Different postdepositional events affecting the bones (recrystallization of apatite, bacterial alterations, mineral and sediment infillings and cracking) were distinguished and their succession proposed.</abstract><cop>SEPM Society for Sedimentary Geology, 4111 S Darlington, Suite 100, Tulsa, OK 74135-6373, U.S.A</cop><pub>SEPM Society for Sedimentary Geology</pub><doi>10.2110/palo.2011.p11-115r</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-1351 |
ispartof | Palaios, 2012-08, Vol.27 (8), p.541-549 |
issn | 0883-1351 1938-5323 |
language | eng |
recordid | cdi_proquest_miscellaneous_1732836638 |
source | JSTOR |
subjects | Apatites archaeological sites Bones Calcite Canals Carbonates Cenozoic Central Europe Chordata Cracow Poland Crystallinity diagenesis Diagenetic processes Elephantidae Elephantoidea Europe Eutheria FTIR spectra Histology hydroxylapatite infrared spectra Mammalia Mammuthus Mammuthus primigenius microstructure mineral composition Minerals Paleolithic Paleontology phosphates Pleistocene Poland Proboscidea Quaternary Research s Sediments SEM data Spadzista Street spectra Stone Age teeth Tetrapoda Theria upper Paleolithic upper Pleistocene Vertebrata vertebrate X-ray diffraction data |
title | DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIAGENETIC%20HISTORY%20OF%20WOOLLY%20MAMMOTH%20(MAMMUTHUS%20PRIMIGENIUS)%20SKELETAL%20REMAINS%20FROM%20THE%20ARCHAEOLOGICAL%20SITE%20CRACOW%20SPADZISTA%20STREET%20(B),%20SOUTHERN%20POLAND&rft.jtitle=Palaios&rft.au=ROGOZ,%20ANNA&rft.date=2012-08&rft.volume=27&rft.issue=8&rft.spage=541&rft.epage=549&rft.pages=541-549&rft.issn=0883-1351&rft.eissn=1938-5323&rft_id=info:doi/10.2110/palo.2011.p11-115r&rft_dat=%3Cjstor_proqu%3E41692729%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a402t-190a7708ff60b435a4ac77f19ed8c6f13c05f73966fdc5de309e8b754314396d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1732836638&rft_id=info:pmid/&rft_jstor_id=41692729&rfr_iscdi=true |