Loading…

DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND

Skeletal remains of woolly mammoths have been studied using polarizing microscopy, SEM, XRD, and FTIR to characterize their diagenetic history. Formation of different secondary minerals in the bones is related to changing conditions of chemical diagenesis, both in the sediment and in the bone itself...

Full description

Saved in:
Bibliographic Details
Published in:Palaios 2012-08, Vol.27 (8), p.541-549
Main Authors: ROGOZ, ANNA, SAWLOWICZ, ZBIGNIEW, WOJTAL, PIOTR
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a402t-190a7708ff60b435a4ac77f19ed8c6f13c05f73966fdc5de309e8b754314396d3
cites
container_end_page 549
container_issue 8
container_start_page 541
container_title Palaios
container_volume 27
creator ROGOZ, ANNA
SAWLOWICZ, ZBIGNIEW
WOJTAL, PIOTR
description Skeletal remains of woolly mammoths have been studied using polarizing microscopy, SEM, XRD, and FTIR to characterize their diagenetic history. Formation of different secondary minerals in the bones is related to changing conditions of chemical diagenesis, both in the sediment and in the bone itself. Bone voids are commonly infilled with calcite and/or carbonate sediment, and dentinal tubules are coated or infilled with secondary apatite. The latter may have formed during the life of the organism. Some osteocyte lacunae were observed to be coated with Fe-Mn (hydroxy)oxides. The average hydroxylapatite Ca/P ratios are higher (1.78–2.10) than in stoichiometric hydroxylapatite. Hydroxylapatite crystallinity indices are generally low at 0.06–0.12, as expected for the young bones. Some of the bones are partly altered by microbial attack. Different postdepositional events affecting the bones (recrystallization of apatite, bacterial alterations, mineral and sediment infillings and cracking) were distinguished and their succession proposed.
doi_str_mv 10.2110/palo.2011.p11-115r
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1732836638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41692729</jstor_id><sourcerecordid>41692729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-190a7708ff60b435a4ac77f19ed8c6f13c05f73966fdc5de309e8b754314396d3</originalsourceid><addsrcrecordid>eNqNkdtq2zAYx83YYFm3FxgMdJmyOdPB8uFSdZTazI6CrVC6G-HY8khIo8xKGH2Svu5kXHa9K33of5A-fp73GcEFRgh-PzdHs8AQocUZIR8hOrzxZighsU8JJm-9GYxj4iNC0Xvvg7UHCBGFFM-8l2XO7vmayzwFWV5LUT0CsQIPQhTFIyhZWQqZgfk4bGW2rcGmysvcJfJtfQvqH7zgkhWg4iXL1zVYVaIEMuOAVWnGuCjEfZ46vc4lB2nFUvEA6g1b_nRPMVDLinMJ5ne330AtXD-v1mAjCrZefvTe9c3R6k-v5423XXGZZv5ro98EEF98lMAmimDc9yHcBYQ2QdNGUY8S3cVt2CPSQtpHJAnDvmtppwlMdLyLaEBQ4G47cuPNp97zYH5ftb2op71t9fHYnLS5WoUigmMShiR2VjxZ28FYO-henYf9UzM8KwTVSEGNFNRIQTkKaqTgQl-m0MFezPAvEaAwwRFOnP510n9pY9u9PrX6jxmOnTqY63Bym499WMEEUhg4N5zcu70xJ_0_H_gL8dyX_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732836638</pqid></control><display><type>article</type><title>DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND</title><source>JSTOR</source><creator>ROGOZ, ANNA ; SAWLOWICZ, ZBIGNIEW ; WOJTAL, PIOTR</creator><creatorcontrib>ROGOZ, ANNA ; SAWLOWICZ, ZBIGNIEW ; WOJTAL, PIOTR</creatorcontrib><description>Skeletal remains of woolly mammoths have been studied using polarizing microscopy, SEM, XRD, and FTIR to characterize their diagenetic history. Formation of different secondary minerals in the bones is related to changing conditions of chemical diagenesis, both in the sediment and in the bone itself. Bone voids are commonly infilled with calcite and/or carbonate sediment, and dentinal tubules are coated or infilled with secondary apatite. The latter may have formed during the life of the organism. Some osteocyte lacunae were observed to be coated with Fe-Mn (hydroxy)oxides. The average hydroxylapatite Ca/P ratios are higher (1.78–2.10) than in stoichiometric hydroxylapatite. Hydroxylapatite crystallinity indices are generally low at 0.06–0.12, as expected for the young bones. Some of the bones are partly altered by microbial attack. Different postdepositional events affecting the bones (recrystallization of apatite, bacterial alterations, mineral and sediment infillings and cracking) were distinguished and their succession proposed.</description><identifier>ISSN: 0883-1351</identifier><identifier>EISSN: 1938-5323</identifier><identifier>DOI: 10.2110/palo.2011.p11-115r</identifier><language>eng</language><publisher>SEPM Society for Sedimentary Geology, 4111 S Darlington, Suite 100, Tulsa, OK 74135-6373, U.S.A: SEPM Society for Sedimentary Geology</publisher><subject>Apatites ; archaeological sites ; Bones ; Calcite ; Canals ; Carbonates ; Cenozoic ; Central Europe ; Chordata ; Cracow Poland ; Crystallinity ; diagenesis ; Diagenetic processes ; Elephantidae ; Elephantoidea ; Europe ; Eutheria ; FTIR spectra ; Histology ; hydroxylapatite ; infrared spectra ; Mammalia ; Mammuthus ; Mammuthus primigenius ; microstructure ; mineral composition ; Minerals ; Paleolithic ; Paleontology ; phosphates ; Pleistocene ; Poland ; Proboscidea ; Quaternary ; Research s ; Sediments ; SEM data ; Spadzista Street ; spectra ; Stone Age ; teeth ; Tetrapoda ; Theria ; upper Paleolithic ; upper Pleistocene ; Vertebrata ; vertebrate ; X-ray diffraction data</subject><ispartof>Palaios, 2012-08, Vol.27 (8), p.541-549</ispartof><rights>SEPM (Society for Sedimentary Geology)</rights><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by SEPM (Society for Sedimentary Geology) @Tulsa, OK @USA @United States</rights><rights>2012 SEPM (Society for Sedimentary Geology)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-190a7708ff60b435a4ac77f19ed8c6f13c05f73966fdc5de309e8b754314396d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41692729$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41692729$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids></links><search><creatorcontrib>ROGOZ, ANNA</creatorcontrib><creatorcontrib>SAWLOWICZ, ZBIGNIEW</creatorcontrib><creatorcontrib>WOJTAL, PIOTR</creatorcontrib><title>DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND</title><title>Palaios</title><description>Skeletal remains of woolly mammoths have been studied using polarizing microscopy, SEM, XRD, and FTIR to characterize their diagenetic history. Formation of different secondary minerals in the bones is related to changing conditions of chemical diagenesis, both in the sediment and in the bone itself. Bone voids are commonly infilled with calcite and/or carbonate sediment, and dentinal tubules are coated or infilled with secondary apatite. The latter may have formed during the life of the organism. Some osteocyte lacunae were observed to be coated with Fe-Mn (hydroxy)oxides. The average hydroxylapatite Ca/P ratios are higher (1.78–2.10) than in stoichiometric hydroxylapatite. Hydroxylapatite crystallinity indices are generally low at 0.06–0.12, as expected for the young bones. Some of the bones are partly altered by microbial attack. Different postdepositional events affecting the bones (recrystallization of apatite, bacterial alterations, mineral and sediment infillings and cracking) were distinguished and their succession proposed.</description><subject>Apatites</subject><subject>archaeological sites</subject><subject>Bones</subject><subject>Calcite</subject><subject>Canals</subject><subject>Carbonates</subject><subject>Cenozoic</subject><subject>Central Europe</subject><subject>Chordata</subject><subject>Cracow Poland</subject><subject>Crystallinity</subject><subject>diagenesis</subject><subject>Diagenetic processes</subject><subject>Elephantidae</subject><subject>Elephantoidea</subject><subject>Europe</subject><subject>Eutheria</subject><subject>FTIR spectra</subject><subject>Histology</subject><subject>hydroxylapatite</subject><subject>infrared spectra</subject><subject>Mammalia</subject><subject>Mammuthus</subject><subject>Mammuthus primigenius</subject><subject>microstructure</subject><subject>mineral composition</subject><subject>Minerals</subject><subject>Paleolithic</subject><subject>Paleontology</subject><subject>phosphates</subject><subject>Pleistocene</subject><subject>Poland</subject><subject>Proboscidea</subject><subject>Quaternary</subject><subject>Research s</subject><subject>Sediments</subject><subject>SEM data</subject><subject>Spadzista Street</subject><subject>spectra</subject><subject>Stone Age</subject><subject>teeth</subject><subject>Tetrapoda</subject><subject>Theria</subject><subject>upper Paleolithic</subject><subject>upper Pleistocene</subject><subject>Vertebrata</subject><subject>vertebrate</subject><subject>X-ray diffraction data</subject><issn>0883-1351</issn><issn>1938-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkdtq2zAYx83YYFm3FxgMdJmyOdPB8uFSdZTazI6CrVC6G-HY8khIo8xKGH2Svu5kXHa9K33of5A-fp73GcEFRgh-PzdHs8AQocUZIR8hOrzxZighsU8JJm-9GYxj4iNC0Xvvg7UHCBGFFM-8l2XO7vmayzwFWV5LUT0CsQIPQhTFIyhZWQqZgfk4bGW2rcGmysvcJfJtfQvqH7zgkhWg4iXL1zVYVaIEMuOAVWnGuCjEfZ46vc4lB2nFUvEA6g1b_nRPMVDLinMJ5ne330AtXD-v1mAjCrZefvTe9c3R6k-v5423XXGZZv5ro98EEF98lMAmimDc9yHcBYQ2QdNGUY8S3cVt2CPSQtpHJAnDvmtppwlMdLyLaEBQ4G47cuPNp97zYH5ftb2op71t9fHYnLS5WoUigmMShiR2VjxZ28FYO-henYf9UzM8KwTVSEGNFNRIQTkKaqTgQl-m0MFezPAvEaAwwRFOnP510n9pY9u9PrX6jxmOnTqY63Bym499WMEEUhg4N5zcu70xJ_0_H_gL8dyX_Q</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>ROGOZ, ANNA</creator><creator>SAWLOWICZ, ZBIGNIEW</creator><creator>WOJTAL, PIOTR</creator><general>SEPM Society for Sedimentary Geology</general><general>Society for Sedimentary Geology</general><general>SEPM (Society for Sedimentary Geology)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope></search><sort><creationdate>201208</creationdate><title>DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND</title><author>ROGOZ, ANNA ; SAWLOWICZ, ZBIGNIEW ; WOJTAL, PIOTR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-190a7708ff60b435a4ac77f19ed8c6f13c05f73966fdc5de309e8b754314396d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Apatites</topic><topic>archaeological sites</topic><topic>Bones</topic><topic>Calcite</topic><topic>Canals</topic><topic>Carbonates</topic><topic>Cenozoic</topic><topic>Central Europe</topic><topic>Chordata</topic><topic>Cracow Poland</topic><topic>Crystallinity</topic><topic>diagenesis</topic><topic>Diagenetic processes</topic><topic>Elephantidae</topic><topic>Elephantoidea</topic><topic>Europe</topic><topic>Eutheria</topic><topic>FTIR spectra</topic><topic>Histology</topic><topic>hydroxylapatite</topic><topic>infrared spectra</topic><topic>Mammalia</topic><topic>Mammuthus</topic><topic>Mammuthus primigenius</topic><topic>microstructure</topic><topic>mineral composition</topic><topic>Minerals</topic><topic>Paleolithic</topic><topic>Paleontology</topic><topic>phosphates</topic><topic>Pleistocene</topic><topic>Poland</topic><topic>Proboscidea</topic><topic>Quaternary</topic><topic>Research s</topic><topic>Sediments</topic><topic>SEM data</topic><topic>Spadzista Street</topic><topic>spectra</topic><topic>Stone Age</topic><topic>teeth</topic><topic>Tetrapoda</topic><topic>Theria</topic><topic>upper Paleolithic</topic><topic>upper Pleistocene</topic><topic>Vertebrata</topic><topic>vertebrate</topic><topic>X-ray diffraction data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROGOZ, ANNA</creatorcontrib><creatorcontrib>SAWLOWICZ, ZBIGNIEW</creatorcontrib><creatorcontrib>WOJTAL, PIOTR</creatorcontrib><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><jtitle>Palaios</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROGOZ, ANNA</au><au>SAWLOWICZ, ZBIGNIEW</au><au>WOJTAL, PIOTR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND</atitle><jtitle>Palaios</jtitle><date>2012-08</date><risdate>2012</risdate><volume>27</volume><issue>8</issue><spage>541</spage><epage>549</epage><pages>541-549</pages><issn>0883-1351</issn><eissn>1938-5323</eissn><abstract>Skeletal remains of woolly mammoths have been studied using polarizing microscopy, SEM, XRD, and FTIR to characterize their diagenetic history. Formation of different secondary minerals in the bones is related to changing conditions of chemical diagenesis, both in the sediment and in the bone itself. Bone voids are commonly infilled with calcite and/or carbonate sediment, and dentinal tubules are coated or infilled with secondary apatite. The latter may have formed during the life of the organism. Some osteocyte lacunae were observed to be coated with Fe-Mn (hydroxy)oxides. The average hydroxylapatite Ca/P ratios are higher (1.78–2.10) than in stoichiometric hydroxylapatite. Hydroxylapatite crystallinity indices are generally low at 0.06–0.12, as expected for the young bones. Some of the bones are partly altered by microbial attack. Different postdepositional events affecting the bones (recrystallization of apatite, bacterial alterations, mineral and sediment infillings and cracking) were distinguished and their succession proposed.</abstract><cop>SEPM Society for Sedimentary Geology, 4111 S Darlington, Suite 100, Tulsa, OK 74135-6373, U.S.A</cop><pub>SEPM Society for Sedimentary Geology</pub><doi>10.2110/palo.2011.p11-115r</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-1351
ispartof Palaios, 2012-08, Vol.27 (8), p.541-549
issn 0883-1351
1938-5323
language eng
recordid cdi_proquest_miscellaneous_1732836638
source JSTOR
subjects Apatites
archaeological sites
Bones
Calcite
Canals
Carbonates
Cenozoic
Central Europe
Chordata
Cracow Poland
Crystallinity
diagenesis
Diagenetic processes
Elephantidae
Elephantoidea
Europe
Eutheria
FTIR spectra
Histology
hydroxylapatite
infrared spectra
Mammalia
Mammuthus
Mammuthus primigenius
microstructure
mineral composition
Minerals
Paleolithic
Paleontology
phosphates
Pleistocene
Poland
Proboscidea
Quaternary
Research s
Sediments
SEM data
Spadzista Street
spectra
Stone Age
teeth
Tetrapoda
Theria
upper Paleolithic
upper Pleistocene
Vertebrata
vertebrate
X-ray diffraction data
title DIAGENETIC HISTORY OF WOOLLY MAMMOTH (MAMMUTHUS PRIMIGENIUS) SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITE CRACOW SPADZISTA STREET (B), SOUTHERN POLAND
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIAGENETIC%20HISTORY%20OF%20WOOLLY%20MAMMOTH%20(MAMMUTHUS%20PRIMIGENIUS)%20SKELETAL%20REMAINS%20FROM%20THE%20ARCHAEOLOGICAL%20SITE%20CRACOW%20SPADZISTA%20STREET%20(B),%20SOUTHERN%20POLAND&rft.jtitle=Palaios&rft.au=ROGOZ,%20ANNA&rft.date=2012-08&rft.volume=27&rft.issue=8&rft.spage=541&rft.epage=549&rft.pages=541-549&rft.issn=0883-1351&rft.eissn=1938-5323&rft_id=info:doi/10.2110/palo.2011.p11-115r&rft_dat=%3Cjstor_proqu%3E41692729%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a402t-190a7708ff60b435a4ac77f19ed8c6f13c05f73966fdc5de309e8b754314396d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1732836638&rft_id=info:pmid/&rft_jstor_id=41692729&rfr_iscdi=true