Loading…

Robust surface tracking combining features, intensity and illumination compensation

Purpose Recovering tissue deformation during robotic-assisted minimally invasive surgery procedures is important for providing intra-operative guidance, enabling in vivo imaging modalities and enhanced robotic control. The tissue motion can also be used to apply motion stabilization and to prescribe...

Full description

Saved in:
Bibliographic Details
Published in:International journal for computer assisted radiology and surgery 2015-12, Vol.10 (12), p.1915-1926
Main Authors: Du, Xiaofei, Clancy, Neil, Arya, Shobhit, Hanna, George B., Kelly, John, Elson, Daniel S., Stoyanov, Danail
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-c11d62a4141f352c4d6e27a671ba070a774023c806540ee5ce6b62263df624c93
cites cdi_FETCH-LOGICAL-c457t-c11d62a4141f352c4d6e27a671ba070a774023c806540ee5ce6b62263df624c93
container_end_page 1926
container_issue 12
container_start_page 1915
container_title International journal for computer assisted radiology and surgery
container_volume 10
creator Du, Xiaofei
Clancy, Neil
Arya, Shobhit
Hanna, George B.
Kelly, John
Elson, Daniel S.
Stoyanov, Danail
description Purpose Recovering tissue deformation during robotic-assisted minimally invasive surgery procedures is important for providing intra-operative guidance, enabling in vivo imaging modalities and enhanced robotic control. The tissue motion can also be used to apply motion stabilization and to prescribe dynamic constraints for avoiding critical anatomical structures. Methods Image-based methods based independently on salient features or on image intensity have limitations when dealing with homogeneous soft tissues or complex reflectance. In this paper, we use a triangular geometric mesh model in order to combine the advantages of both feature and intensity information and track the tissue surface reliably and robustly. Results Synthetic and in vivo experiments are performed to provide quantitative analysis of the tracking accuracy of our method, and we also show exemplar results for registering multispectral images where there is only a weak image signal. Conclusion Compared to traditional methods, our hybrid tracking method is more robust and has improved convergence in the presence of larger displacements, tissue dynamics and illumination changes.
doi_str_mv 10.1007/s11548-015-1243-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1733188993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1733188993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-c11d62a4141f352c4d6e27a671ba070a774023c806540ee5ce6b62263df624c93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwA1hQRgYCPttxkhFVfEmVkPiYLcdxKpfEKXY89N_jkNKR6e50z72yH4QuAd8CxvmdB8hYkWLIUiCMpuURmkPBIeWMlMeHHvAMnXm_wZhlOc1O0YzweA-EzNH7W18FPyQ-uEYqnQxOqi9j14nqu8rYsWu0HILT_iYxdtDWm2GXSFsnpm1DZ6wcTG9HfBt3v8M5Omlk6_XFvi7Q5-PDx_I5Xb0-vSzvV6mK7xhSBVBzIhkwaGhGFKu5JrnkOVQS51jmOcOEqgLzjGGtM6V5xQnhtG44YaqkC3Q95W5d_x20H0RnvNJtK63ugxeQUwpFUZY0ojChyvXeO92IrTOddDsBWIwuxeRSRJdidCnG-Kt9fKg6XR8u_uRFgEyAjyu71k5s-uBs_PI_qT8k3383</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733188993</pqid></control><display><type>article</type><title>Robust surface tracking combining features, intensity and illumination compensation</title><source>Springer Link</source><creator>Du, Xiaofei ; Clancy, Neil ; Arya, Shobhit ; Hanna, George B. ; Kelly, John ; Elson, Daniel S. ; Stoyanov, Danail</creator><creatorcontrib>Du, Xiaofei ; Clancy, Neil ; Arya, Shobhit ; Hanna, George B. ; Kelly, John ; Elson, Daniel S. ; Stoyanov, Danail</creatorcontrib><description>Purpose Recovering tissue deformation during robotic-assisted minimally invasive surgery procedures is important for providing intra-operative guidance, enabling in vivo imaging modalities and enhanced robotic control. The tissue motion can also be used to apply motion stabilization and to prescribe dynamic constraints for avoiding critical anatomical structures. Methods Image-based methods based independently on salient features or on image intensity have limitations when dealing with homogeneous soft tissues or complex reflectance. In this paper, we use a triangular geometric mesh model in order to combine the advantages of both feature and intensity information and track the tissue surface reliably and robustly. Results Synthetic and in vivo experiments are performed to provide quantitative analysis of the tracking accuracy of our method, and we also show exemplar results for registering multispectral images where there is only a weak image signal. Conclusion Compared to traditional methods, our hybrid tracking method is more robust and has improved convergence in the presence of larger displacements, tissue dynamics and illumination changes.</description><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-015-1243-9</identifier><identifier>PMID: 26100122</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Computer Imaging ; Computer Science ; Health Informatics ; Humans ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Imaging, Three-Dimensional - methods ; Lighting ; Medicine ; Medicine &amp; Public Health ; Models, Theoretical ; Original Article ; Pattern Recognition and Graphics ; Radiology ; Robotic Surgical Procedures - methods ; Surgery ; Surgery, Computer-Assisted - methods ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2015-12, Vol.10 (12), p.1915-1926</ispartof><rights>CARS 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-c11d62a4141f352c4d6e27a671ba070a774023c806540ee5ce6b62263df624c93</citedby><cites>FETCH-LOGICAL-c457t-c11d62a4141f352c4d6e27a671ba070a774023c806540ee5ce6b62263df624c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26100122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Xiaofei</creatorcontrib><creatorcontrib>Clancy, Neil</creatorcontrib><creatorcontrib>Arya, Shobhit</creatorcontrib><creatorcontrib>Hanna, George B.</creatorcontrib><creatorcontrib>Kelly, John</creatorcontrib><creatorcontrib>Elson, Daniel S.</creatorcontrib><creatorcontrib>Stoyanov, Danail</creatorcontrib><title>Robust surface tracking combining features, intensity and illumination compensation</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose Recovering tissue deformation during robotic-assisted minimally invasive surgery procedures is important for providing intra-operative guidance, enabling in vivo imaging modalities and enhanced robotic control. The tissue motion can also be used to apply motion stabilization and to prescribe dynamic constraints for avoiding critical anatomical structures. Methods Image-based methods based independently on salient features or on image intensity have limitations when dealing with homogeneous soft tissues or complex reflectance. In this paper, we use a triangular geometric mesh model in order to combine the advantages of both feature and intensity information and track the tissue surface reliably and robustly. Results Synthetic and in vivo experiments are performed to provide quantitative analysis of the tracking accuracy of our method, and we also show exemplar results for registering multispectral images where there is only a weak image signal. Conclusion Compared to traditional methods, our hybrid tracking method is more robust and has improved convergence in the presence of larger displacements, tissue dynamics and illumination changes.</description><subject>Algorithms</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Lighting</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Models, Theoretical</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Radiology</subject><subject>Robotic Surgical Procedures - methods</subject><subject>Surgery</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Vision</subject><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwA1hQRgYCPttxkhFVfEmVkPiYLcdxKpfEKXY89N_jkNKR6e50z72yH4QuAd8CxvmdB8hYkWLIUiCMpuURmkPBIeWMlMeHHvAMnXm_wZhlOc1O0YzweA-EzNH7W18FPyQ-uEYqnQxOqi9j14nqu8rYsWu0HILT_iYxdtDWm2GXSFsnpm1DZ6wcTG9HfBt3v8M5Omlk6_XFvi7Q5-PDx_I5Xb0-vSzvV6mK7xhSBVBzIhkwaGhGFKu5JrnkOVQS51jmOcOEqgLzjGGtM6V5xQnhtG44YaqkC3Q95W5d_x20H0RnvNJtK63ugxeQUwpFUZY0ojChyvXeO92IrTOddDsBWIwuxeRSRJdidCnG-Kt9fKg6XR8u_uRFgEyAjyu71k5s-uBs_PI_qT8k3383</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Du, Xiaofei</creator><creator>Clancy, Neil</creator><creator>Arya, Shobhit</creator><creator>Hanna, George B.</creator><creator>Kelly, John</creator><creator>Elson, Daniel S.</creator><creator>Stoyanov, Danail</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151201</creationdate><title>Robust surface tracking combining features, intensity and illumination compensation</title><author>Du, Xiaofei ; Clancy, Neil ; Arya, Shobhit ; Hanna, George B. ; Kelly, John ; Elson, Daniel S. ; Stoyanov, Danail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-c11d62a4141f352c4d6e27a671ba070a774023c806540ee5ce6b62263df624c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Lighting</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Models, Theoretical</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Radiology</topic><topic>Robotic Surgical Procedures - methods</topic><topic>Surgery</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Xiaofei</creatorcontrib><creatorcontrib>Clancy, Neil</creatorcontrib><creatorcontrib>Arya, Shobhit</creatorcontrib><creatorcontrib>Hanna, George B.</creatorcontrib><creatorcontrib>Kelly, John</creatorcontrib><creatorcontrib>Elson, Daniel S.</creatorcontrib><creatorcontrib>Stoyanov, Danail</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Xiaofei</au><au>Clancy, Neil</au><au>Arya, Shobhit</au><au>Hanna, George B.</au><au>Kelly, John</au><au>Elson, Daniel S.</au><au>Stoyanov, Danail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust surface tracking combining features, intensity and illumination compensation</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>10</volume><issue>12</issue><spage>1915</spage><epage>1926</epage><pages>1915-1926</pages><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose Recovering tissue deformation during robotic-assisted minimally invasive surgery procedures is important for providing intra-operative guidance, enabling in vivo imaging modalities and enhanced robotic control. The tissue motion can also be used to apply motion stabilization and to prescribe dynamic constraints for avoiding critical anatomical structures. Methods Image-based methods based independently on salient features or on image intensity have limitations when dealing with homogeneous soft tissues or complex reflectance. In this paper, we use a triangular geometric mesh model in order to combine the advantages of both feature and intensity information and track the tissue surface reliably and robustly. Results Synthetic and in vivo experiments are performed to provide quantitative analysis of the tracking accuracy of our method, and we also show exemplar results for registering multispectral images where there is only a weak image signal. Conclusion Compared to traditional methods, our hybrid tracking method is more robust and has improved convergence in the presence of larger displacements, tissue dynamics and illumination changes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26100122</pmid><doi>10.1007/s11548-015-1243-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1861-6410
ispartof International journal for computer assisted radiology and surgery, 2015-12, Vol.10 (12), p.1915-1926
issn 1861-6410
1861-6429
language eng
recordid cdi_proquest_miscellaneous_1733188993
source Springer Link
subjects Algorithms
Computer Imaging
Computer Science
Health Informatics
Humans
Image Interpretation, Computer-Assisted - methods
Imaging
Imaging, Three-Dimensional - methods
Lighting
Medicine
Medicine & Public Health
Models, Theoretical
Original Article
Pattern Recognition and Graphics
Radiology
Robotic Surgical Procedures - methods
Surgery
Surgery, Computer-Assisted - methods
Vision
title Robust surface tracking combining features, intensity and illumination compensation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20surface%20tracking%20combining%20features,%20intensity%20and%20illumination%20compensation&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Du,%20Xiaofei&rft.date=2015-12-01&rft.volume=10&rft.issue=12&rft.spage=1915&rft.epage=1926&rft.pages=1915-1926&rft.issn=1861-6410&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-015-1243-9&rft_dat=%3Cproquest_cross%3E1733188993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-c11d62a4141f352c4d6e27a671ba070a774023c806540ee5ce6b62263df624c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1733188993&rft_id=info:pmid/26100122&rfr_iscdi=true