Loading…
Comparison of TRMM Precipitation Retrievals with Rain Gauge Data from Ocean Buoys
Four years of precipitation retrievals from the Tropical Rainfall Measuring Mission (TRMM) satellite are compared with data from 25 surface rain gauges on the National Oceanic and Atmospheric Administration/Pacific Marine Environment Laboratory (NOAA/PMEL) Tropical Atmosphere–Ocean Array/Triangle Tr...
Saved in:
Published in: | Journal of climate 2005-01, Vol.18 (1), p.178-190 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Four years of precipitation retrievals from the Tropical Rainfall Measuring Mission (TRMM) satellite are compared with data from 25 surface rain gauges on the National Oceanic and Atmospheric Administration/Pacific Marine Environment Laboratory (NOAA/PMEL) Tropical Atmosphere–Ocean Array/Triangle Trans-Ocean Buoy Network TAO/TRITON buoy array in the tropical Pacific. The buoy gauges have a significant advantage over island-based gauges for this purpose because they represent open-ocean conditions and are not affected by island orography or surface heating. Because precipitation is correlated with itself in both space and time, comparisons between the two data sources can be improved by properly averaging in space and/or time. When comparing gauges with individual satellite overpasses, the optimal averaging time for the gauge (centered on the satellite overpass time) depends on the area over which the satellite data are averaged. For 1° × 1° areas there is a broad maximum in the correlation for gauge-averaging periods of ∼2 to 10 h. Maximum correlationsrare in the range 0.6 to 0.7. For larger satellite averaging areas, correlations with the gauges are smaller (because a single gauge becomes less representative of the precipitation in the box) and the optimum gauge-averaging time is longer. For individual satellite overpasses averaged over a 1° × 1° box, the relative rms difference with respect to a rain gauge centered in the box is ∼200% to 300%. For 32-day time means over 1° × 1° boxes, the relative rms difference between the satellite data and a gauge is in the range of 40% to 70%. The bias between the gauges and the satellite retrievals is estimated by correlating the long-term time-mean precipitation estimates across the set of gauges. The TRMM Microwave Imager (TMI) gives anr² of 0.97 and a slope of 0.970, indicating very little bias with respect to the gauges. For the Precipitation Radar (PR) the comparable numbers are 0.92 and 0.699. The results of this study are consistent with the sampling error estimates from the statistical model of Bell and Kundu. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/JCLI3259.1 |