Loading…

Molecular mechanisms of latent inflammation in metabolic syndrome. Possible role of sirtuins and peroxisome proliferator-activated receptor type γ

The problem of metabolic syndrome is one of the most important in medicine today. The main hazard of metabolic syndrome is development of latent inflammation in adipose tissue, which promotes atherosclerosis, non-alcoholic fatty liver disease, myocarditis, and a number of other illnesses. Therefore,...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Moscow) 2015-10, Vol.80 (10), p.1217-1226
Main Authors: Stafeev, I. S., Menshikov, M. Y., Tsokolaeva, Z. I., Shestakova, M. V., Parfyonova, Ye. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of metabolic syndrome is one of the most important in medicine today. The main hazard of metabolic syndrome is development of latent inflammation in adipose tissue, which promotes atherosclerosis, non-alcoholic fatty liver disease, myocarditis, and a number of other illnesses. Therefore, understanding of molecular mechanisms of latent inflammation in adipose tissue is very important for treatment of metabolic syndrome. Three main components that arise during hypertrophy and hyperplasia of adipocytes underlie such inflammation: endoplasmic reticulum stress, oxidative stress, and hypoxia. Each of these components mediates activation in different ways of the key factor of inflammation–NF-κB. For metabolic syndrome therapy, it is suggested to influence a number of inflammatory signaling components by activating other cell factors to suppress development of inflammation. Such potential factors are peroxisome proliferator-activated receptors type γ that suppress transcription factor NF-κB through direct contact or via kinase of a NF-κB inhibitor (IKK), and also the antiinflammatory transcription factor AP-1. Other possible targets are type 3 NAD + -dependent histone deacetylases (sirtuins). There are mutually antagonistic relationships between NF-κB and sirtuin type 1 that prevent development of inflammation in metabolic syndrome. Moreover, sirtuin type 1 inhibits the antiinflammatory transcription factor AP-1. Study of the influence of these factors on the relationship between macrophages and adipocytes, macrophages, and adipose tissue-derived stromal cells can help to understand mechanisms of signaling and development of latent inflammation in metabolic syndrome.
ISSN:0006-2979
1608-3040
DOI:10.1134/S0006297915100028