Loading…

Cortical and subcortical contributions to saccade latency in the human brain

An important property of our motor system is the ability to either perform or inhibit an automatic goal‐directed reaction. Imagine, for example, how easily we can catch a ball, while at the same time we would never grasp a stinging insect approaching us. The oculomotor system provides a good model t...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience 2005-05, Vol.21 (10), p.2853-2863
Main Authors: Neggers, S. F. W., Raemaekers, M. A. H., Lampmann, E. E. L., Postma, A., Ramsey, N. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4719-f86916ed81b3803488afca9c7a14c4affde0d1c6c0451d912c45ef1d387d64833
cites cdi_FETCH-LOGICAL-c4719-f86916ed81b3803488afca9c7a14c4affde0d1c6c0451d912c45ef1d387d64833
container_end_page 2863
container_issue 10
container_start_page 2853
container_title The European journal of neuroscience
container_volume 21
creator Neggers, S. F. W.
Raemaekers, M. A. H.
Lampmann, E. E. L.
Postma, A.
Ramsey, N. F.
description An important property of our motor system is the ability to either perform or inhibit an automatic goal‐directed reaction. Imagine, for example, how easily we can catch a ball, while at the same time we would never grasp a stinging insect approaching us. The oculomotor system provides a good model to study this ability. Monkey midbrain superior colliculus neurons are responsible for automatic visually evoked saccades, whereas the frontal eye fields can prevent reflexive glances. Little is known about human superior colliculus or the competition between the midbrain and frontal areas controlling saccades. In the present functional magnetic resonance study we used the gap paradigm, where a stimulus fixated with the eyes is removed 200 ms prior to saccade target onset. Subjects were required to either look at the target or prevent an eye movement. From what is known from non‐human primate neurophysiology, it is expected that the gap will result in enlarged neuronal activity in the human superior colliculus, disinhibiting the oculomotor system and enhancing automatic reactions. Importantly, we demonstrate that the human superior colliculus homologue is indeed activated by the removal of a fixation target, in either task. The frontal eye fields show a reverse pattern when saccades were suppressed. Furthermore, magnitude of responses in the superior colliculus correlated negatively with saccade latency, and in the frontal eye fields positively. These findings confirm for the first time that the human superior colliculus generates automatic goal‐directed saccades, whereas the frontal eye fields can exert volitional control over automatic orienting.
doi_str_mv 10.1111/j.1460-9568.2005.04129.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17339714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17339714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4719-f86916ed81b3803488afca9c7a14c4affde0d1c6c0451d912c45ef1d387d64833</originalsourceid><addsrcrecordid>eNqNkE1P7CAUhonR6Fz1LxhW7lo5hVJYuDDj172ZaGI0GjeEAo2MnVahjTP_3vbOqFvZwMl5n5fkQQgDSWE4J_MUGCeJzLlIM0LylDDIZLrcQpPvxTaaEJnTRAB_2kN_YpwTQgRn-S7ag1xmXFI6QbNpGzpvdI11Y3HsS_M1m7bpgi_7zrdNxF2LozZGW4dr3bnGrLBvcPfi8Eu_0A0ug_bNAdqpdB3d4ebeRw-XF_fT62R2e_V3ejZLDCtAJpXgErizAkoqCGVC6MpoaQoNzDBdVdYRC4YbwnKwEjLDcleBpaKwnAlK99HxuvcttO-9i51a-GhcXevGtX1UUFAqC2BDUKyDJrQxBlept-AXOqwUEDWaVHM1ClOjMDWaVP9NquWAHm3-6MuFsz_gRt0QOF0HPnztVr8uVhf_bsbXwCdr3sfOLb95HV4VL2iRq8ebKyU4P797njKV0U-3qZFG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17339714</pqid></control><display><type>article</type><title>Cortical and subcortical contributions to saccade latency in the human brain</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Neggers, S. F. W. ; Raemaekers, M. A. H. ; Lampmann, E. E. L. ; Postma, A. ; Ramsey, N. F.</creator><creatorcontrib>Neggers, S. F. W. ; Raemaekers, M. A. H. ; Lampmann, E. E. L. ; Postma, A. ; Ramsey, N. F.</creatorcontrib><description>An important property of our motor system is the ability to either perform or inhibit an automatic goal‐directed reaction. Imagine, for example, how easily we can catch a ball, while at the same time we would never grasp a stinging insect approaching us. The oculomotor system provides a good model to study this ability. Monkey midbrain superior colliculus neurons are responsible for automatic visually evoked saccades, whereas the frontal eye fields can prevent reflexive glances. Little is known about human superior colliculus or the competition between the midbrain and frontal areas controlling saccades. In the present functional magnetic resonance study we used the gap paradigm, where a stimulus fixated with the eyes is removed 200 ms prior to saccade target onset. Subjects were required to either look at the target or prevent an eye movement. From what is known from non‐human primate neurophysiology, it is expected that the gap will result in enlarged neuronal activity in the human superior colliculus, disinhibiting the oculomotor system and enhancing automatic reactions. Importantly, we demonstrate that the human superior colliculus homologue is indeed activated by the removal of a fixation target, in either task. The frontal eye fields show a reverse pattern when saccades were suppressed. Furthermore, magnitude of responses in the superior colliculus correlated negatively with saccade latency, and in the frontal eye fields positively. These findings confirm for the first time that the human superior colliculus generates automatic goal‐directed saccades, whereas the frontal eye fields can exert volitional control over automatic orienting.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/j.1460-9568.2005.04129.x</identifier><identifier>PMID: 15926933</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Adult ; Brain - physiology ; Brain Mapping ; Cerebral Cortex - physiology ; Female ; fMRI ; frontal eye fields ; Functional Laterality ; human brain ; Humans ; inhibition ; Magnetic Resonance Imaging ; Male ; Photic Stimulation ; Reaction Time ; saccades ; Saccades - physiology ; superior colliculus</subject><ispartof>The European journal of neuroscience, 2005-05, Vol.21 (10), p.2853-2863</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4719-f86916ed81b3803488afca9c7a14c4affde0d1c6c0451d912c45ef1d387d64833</citedby><cites>FETCH-LOGICAL-c4719-f86916ed81b3803488afca9c7a14c4affde0d1c6c0451d912c45ef1d387d64833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15926933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neggers, S. F. W.</creatorcontrib><creatorcontrib>Raemaekers, M. A. H.</creatorcontrib><creatorcontrib>Lampmann, E. E. L.</creatorcontrib><creatorcontrib>Postma, A.</creatorcontrib><creatorcontrib>Ramsey, N. F.</creatorcontrib><title>Cortical and subcortical contributions to saccade latency in the human brain</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>An important property of our motor system is the ability to either perform or inhibit an automatic goal‐directed reaction. Imagine, for example, how easily we can catch a ball, while at the same time we would never grasp a stinging insect approaching us. The oculomotor system provides a good model to study this ability. Monkey midbrain superior colliculus neurons are responsible for automatic visually evoked saccades, whereas the frontal eye fields can prevent reflexive glances. Little is known about human superior colliculus or the competition between the midbrain and frontal areas controlling saccades. In the present functional magnetic resonance study we used the gap paradigm, where a stimulus fixated with the eyes is removed 200 ms prior to saccade target onset. Subjects were required to either look at the target or prevent an eye movement. From what is known from non‐human primate neurophysiology, it is expected that the gap will result in enlarged neuronal activity in the human superior colliculus, disinhibiting the oculomotor system and enhancing automatic reactions. Importantly, we demonstrate that the human superior colliculus homologue is indeed activated by the removal of a fixation target, in either task. The frontal eye fields show a reverse pattern when saccades were suppressed. Furthermore, magnitude of responses in the superior colliculus correlated negatively with saccade latency, and in the frontal eye fields positively. These findings confirm for the first time that the human superior colliculus generates automatic goal‐directed saccades, whereas the frontal eye fields can exert volitional control over automatic orienting.</description><subject>Adult</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Cerebral Cortex - physiology</subject><subject>Female</subject><subject>fMRI</subject><subject>frontal eye fields</subject><subject>Functional Laterality</subject><subject>human brain</subject><subject>Humans</subject><subject>inhibition</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Photic Stimulation</subject><subject>Reaction Time</subject><subject>saccades</subject><subject>Saccades - physiology</subject><subject>superior colliculus</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1P7CAUhonR6Fz1LxhW7lo5hVJYuDDj172ZaGI0GjeEAo2MnVahjTP_3vbOqFvZwMl5n5fkQQgDSWE4J_MUGCeJzLlIM0LylDDIZLrcQpPvxTaaEJnTRAB_2kN_YpwTQgRn-S7ag1xmXFI6QbNpGzpvdI11Y3HsS_M1m7bpgi_7zrdNxF2LozZGW4dr3bnGrLBvcPfi8Eu_0A0ug_bNAdqpdB3d4ebeRw-XF_fT62R2e_V3ejZLDCtAJpXgErizAkoqCGVC6MpoaQoNzDBdVdYRC4YbwnKwEjLDcleBpaKwnAlK99HxuvcttO-9i51a-GhcXevGtX1UUFAqC2BDUKyDJrQxBlept-AXOqwUEDWaVHM1ClOjMDWaVP9NquWAHm3-6MuFsz_gRt0QOF0HPnztVr8uVhf_bsbXwCdr3sfOLb95HV4VL2iRq8ebKyU4P797njKV0U-3qZFG</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Neggers, S. F. W.</creator><creator>Raemaekers, M. A. H.</creator><creator>Lampmann, E. E. L.</creator><creator>Postma, A.</creator><creator>Ramsey, N. F.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200505</creationdate><title>Cortical and subcortical contributions to saccade latency in the human brain</title><author>Neggers, S. F. W. ; Raemaekers, M. A. H. ; Lampmann, E. E. L. ; Postma, A. ; Ramsey, N. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4719-f86916ed81b3803488afca9c7a14c4affde0d1c6c0451d912c45ef1d387d64833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adult</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Cerebral Cortex - physiology</topic><topic>Female</topic><topic>fMRI</topic><topic>frontal eye fields</topic><topic>Functional Laterality</topic><topic>human brain</topic><topic>Humans</topic><topic>inhibition</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Photic Stimulation</topic><topic>Reaction Time</topic><topic>saccades</topic><topic>Saccades - physiology</topic><topic>superior colliculus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neggers, S. F. W.</creatorcontrib><creatorcontrib>Raemaekers, M. A. H.</creatorcontrib><creatorcontrib>Lampmann, E. E. L.</creatorcontrib><creatorcontrib>Postma, A.</creatorcontrib><creatorcontrib>Ramsey, N. F.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neggers, S. F. W.</au><au>Raemaekers, M. A. H.</au><au>Lampmann, E. E. L.</au><au>Postma, A.</au><au>Ramsey, N. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical and subcortical contributions to saccade latency in the human brain</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2005-05</date><risdate>2005</risdate><volume>21</volume><issue>10</issue><spage>2853</spage><epage>2863</epage><pages>2853-2863</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>An important property of our motor system is the ability to either perform or inhibit an automatic goal‐directed reaction. Imagine, for example, how easily we can catch a ball, while at the same time we would never grasp a stinging insect approaching us. The oculomotor system provides a good model to study this ability. Monkey midbrain superior colliculus neurons are responsible for automatic visually evoked saccades, whereas the frontal eye fields can prevent reflexive glances. Little is known about human superior colliculus or the competition between the midbrain and frontal areas controlling saccades. In the present functional magnetic resonance study we used the gap paradigm, where a stimulus fixated with the eyes is removed 200 ms prior to saccade target onset. Subjects were required to either look at the target or prevent an eye movement. From what is known from non‐human primate neurophysiology, it is expected that the gap will result in enlarged neuronal activity in the human superior colliculus, disinhibiting the oculomotor system and enhancing automatic reactions. Importantly, we demonstrate that the human superior colliculus homologue is indeed activated by the removal of a fixation target, in either task. The frontal eye fields show a reverse pattern when saccades were suppressed. Furthermore, magnitude of responses in the superior colliculus correlated negatively with saccade latency, and in the frontal eye fields positively. These findings confirm for the first time that the human superior colliculus generates automatic goal‐directed saccades, whereas the frontal eye fields can exert volitional control over automatic orienting.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15926933</pmid><doi>10.1111/j.1460-9568.2005.04129.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2005-05, Vol.21 (10), p.2853-2863
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_17339714
source Wiley-Blackwell Read & Publish Collection
subjects Adult
Brain - physiology
Brain Mapping
Cerebral Cortex - physiology
Female
fMRI
frontal eye fields
Functional Laterality
human brain
Humans
inhibition
Magnetic Resonance Imaging
Male
Photic Stimulation
Reaction Time
saccades
Saccades - physiology
superior colliculus
title Cortical and subcortical contributions to saccade latency in the human brain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20and%20subcortical%20contributions%20to%20saccade%20latency%20in%20the%20human%20brain&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Neggers,%20S.%20F.%20W.&rft.date=2005-05&rft.volume=21&rft.issue=10&rft.spage=2853&rft.epage=2863&rft.pages=2853-2863&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/j.1460-9568.2005.04129.x&rft_dat=%3Cproquest_cross%3E17339714%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4719-f86916ed81b3803488afca9c7a14c4affde0d1c6c0451d912c45ef1d387d64833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17339714&rft_id=info:pmid/15926933&rfr_iscdi=true