Loading…
Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics
The extended Lagrangian Born–Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a...
Saved in:
Published in: | Journal of chemical theory and computation 2015-06, Vol.11 (6), p.2697-2704 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3 |
container_end_page | 2704 |
container_issue | 6 |
container_start_page | 2697 |
container_title | Journal of chemical theory and computation |
container_volume | 11 |
creator | Cawkwell, M. J Coe, J. D Yadav, S. K Liu, X.-Y Niklasson, A. M. N |
description | The extended Lagrangian Born–Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated. |
doi_str_mv | 10.1021/acs.jctc.5b00143 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735330550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735330550</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EolDYmVBGBlLs-CPJCOVTKmIprJFjn4OrxC52ItF_T6CFjeXuhud9pXsQOiN4RnBGrqSKs5Xq1YzXGBNG99AR4axMS5GJ_b-bFBN0HOMKY0pZRg_RJBM851zwI_R299mD06CThWyCdI2VLrn3oRta2VvvEm-S-bsMDaRz72IfpHUjvLTNe5_eWKeta5Jn34IaAyG53TjZWRVP0IGRbYTT3Z6i1_u75fwxXbw8PM2vF6mkVPRpYUAAU9TkdZblmrE8B66hxIVmPKMFVUawUo_TgNE1YYWsS02BYDBcC0Wn6GLbuw7-Y4DYV52NCtpWOvBDrEhOOaWYczyieIuq4GMMYKp1sJ0Mm4rg6ttmNdqsvm1WO5tj5HzXPtQd6L_Ar74RuNwCP1E_BDc--3_fFwUeghM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735330550</pqid></control><display><type>article</type><title>Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Cawkwell, M. J ; Coe, J. D ; Yadav, S. K ; Liu, X.-Y ; Niklasson, A. M. N</creator><creatorcontrib>Cawkwell, M. J ; Coe, J. D ; Yadav, S. K ; Liu, X.-Y ; Niklasson, A. M. N</creatorcontrib><description>The extended Lagrangian Born–Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.5b00143</identifier><identifier>PMID: 26575565</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of chemical theory and computation, 2015-06, Vol.11 (6), p.2697-2704</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3</citedby><cites>FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26575565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cawkwell, M. J</creatorcontrib><creatorcontrib>Coe, J. D</creatorcontrib><creatorcontrib>Yadav, S. K</creatorcontrib><creatorcontrib>Liu, X.-Y</creatorcontrib><creatorcontrib>Niklasson, A. M. N</creatorcontrib><title>Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The extended Lagrangian Born–Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.</description><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EolDYmVBGBlLs-CPJCOVTKmIprJFjn4OrxC52ItF_T6CFjeXuhud9pXsQOiN4RnBGrqSKs5Xq1YzXGBNG99AR4axMS5GJ_b-bFBN0HOMKY0pZRg_RJBM851zwI_R299mD06CThWyCdI2VLrn3oRta2VvvEm-S-bsMDaRz72IfpHUjvLTNe5_eWKeta5Jn34IaAyG53TjZWRVP0IGRbYTT3Z6i1_u75fwxXbw8PM2vF6mkVPRpYUAAU9TkdZblmrE8B66hxIVmPKMFVUawUo_TgNE1YYWsS02BYDBcC0Wn6GLbuw7-Y4DYV52NCtpWOvBDrEhOOaWYczyieIuq4GMMYKp1sJ0Mm4rg6ttmNdqsvm1WO5tj5HzXPtQd6L_Ar74RuNwCP1E_BDc--3_fFwUeghM</recordid><startdate>20150609</startdate><enddate>20150609</enddate><creator>Cawkwell, M. J</creator><creator>Coe, J. D</creator><creator>Yadav, S. K</creator><creator>Liu, X.-Y</creator><creator>Niklasson, A. M. N</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150609</creationdate><title>Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics</title><author>Cawkwell, M. J ; Coe, J. D ; Yadav, S. K ; Liu, X.-Y ; Niklasson, A. M. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cawkwell, M. J</creatorcontrib><creatorcontrib>Coe, J. D</creatorcontrib><creatorcontrib>Yadav, S. K</creatorcontrib><creatorcontrib>Liu, X.-Y</creatorcontrib><creatorcontrib>Niklasson, A. M. N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cawkwell, M. J</au><au>Coe, J. D</au><au>Yadav, S. K</au><au>Liu, X.-Y</au><au>Niklasson, A. M. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-06-09</date><risdate>2015</risdate><volume>11</volume><issue>6</issue><spage>2697</spage><epage>2704</epage><pages>2697-2704</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The extended Lagrangian Born–Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26575565</pmid><doi>10.1021/acs.jctc.5b00143</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2015-06, Vol.11 (6), p.2697-2704 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_1735330550 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Lagrangian%20Formulation%20of%20Charge-Constrained%20Tight-Binding%20Molecular%20Dynamics&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Cawkwell,%20M.%20J&rft.date=2015-06-09&rft.volume=11&rft.issue=6&rft.spage=2697&rft.epage=2704&rft.pages=2697-2704&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.5b00143&rft_dat=%3Cproquest_cross%3E1735330550%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1735330550&rft_id=info:pmid/26575565&rfr_iscdi=true |