Loading…

Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics

The extended Lagrangian Born–Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2015-06, Vol.11 (6), p.2697-2704
Main Authors: Cawkwell, M. J, Coe, J. D, Yadav, S. K, Liu, X.-Y, Niklasson, A. M. N
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3
cites cdi_FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3
container_end_page 2704
container_issue 6
container_start_page 2697
container_title Journal of chemical theory and computation
container_volume 11
creator Cawkwell, M. J
Coe, J. D
Yadav, S. K
Liu, X.-Y
Niklasson, A. M. N
description The extended Lagrangian Born–Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.
doi_str_mv 10.1021/acs.jctc.5b00143
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1735330550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735330550</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EolDYmVBGBlLs-CPJCOVTKmIprJFjn4OrxC52ItF_T6CFjeXuhud9pXsQOiN4RnBGrqSKs5Xq1YzXGBNG99AR4axMS5GJ_b-bFBN0HOMKY0pZRg_RJBM851zwI_R299mD06CThWyCdI2VLrn3oRta2VvvEm-S-bsMDaRz72IfpHUjvLTNe5_eWKeta5Jn34IaAyG53TjZWRVP0IGRbYTT3Z6i1_u75fwxXbw8PM2vF6mkVPRpYUAAU9TkdZblmrE8B66hxIVmPKMFVUawUo_TgNE1YYWsS02BYDBcC0Wn6GLbuw7-Y4DYV52NCtpWOvBDrEhOOaWYczyieIuq4GMMYKp1sJ0Mm4rg6ttmNdqsvm1WO5tj5HzXPtQd6L_Ar74RuNwCP1E_BDc--3_fFwUeghM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735330550</pqid></control><display><type>article</type><title>Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Cawkwell, M. J ; Coe, J. D ; Yadav, S. K ; Liu, X.-Y ; Niklasson, A. M. N</creator><creatorcontrib>Cawkwell, M. J ; Coe, J. D ; Yadav, S. K ; Liu, X.-Y ; Niklasson, A. M. N</creatorcontrib><description>The extended Lagrangian Born–Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.5b00143</identifier><identifier>PMID: 26575565</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of chemical theory and computation, 2015-06, Vol.11 (6), p.2697-2704</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3</citedby><cites>FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26575565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cawkwell, M. J</creatorcontrib><creatorcontrib>Coe, J. D</creatorcontrib><creatorcontrib>Yadav, S. K</creatorcontrib><creatorcontrib>Liu, X.-Y</creatorcontrib><creatorcontrib>Niklasson, A. M. N</creatorcontrib><title>Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The extended Lagrangian Born–Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.</description><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EolDYmVBGBlLs-CPJCOVTKmIprJFjn4OrxC52ItF_T6CFjeXuhud9pXsQOiN4RnBGrqSKs5Xq1YzXGBNG99AR4axMS5GJ_b-bFBN0HOMKY0pZRg_RJBM851zwI_R299mD06CThWyCdI2VLrn3oRta2VvvEm-S-bsMDaRz72IfpHUjvLTNe5_eWKeta5Jn34IaAyG53TjZWRVP0IGRbYTT3Z6i1_u75fwxXbw8PM2vF6mkVPRpYUAAU9TkdZblmrE8B66hxIVmPKMFVUawUo_TgNE1YYWsS02BYDBcC0Wn6GLbuw7-Y4DYV52NCtpWOvBDrEhOOaWYczyieIuq4GMMYKp1sJ0Mm4rg6ttmNdqsvm1WO5tj5HzXPtQd6L_Ar74RuNwCP1E_BDc--3_fFwUeghM</recordid><startdate>20150609</startdate><enddate>20150609</enddate><creator>Cawkwell, M. J</creator><creator>Coe, J. D</creator><creator>Yadav, S. K</creator><creator>Liu, X.-Y</creator><creator>Niklasson, A. M. N</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150609</creationdate><title>Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics</title><author>Cawkwell, M. J ; Coe, J. D ; Yadav, S. K ; Liu, X.-Y ; Niklasson, A. M. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cawkwell, M. J</creatorcontrib><creatorcontrib>Coe, J. D</creatorcontrib><creatorcontrib>Yadav, S. K</creatorcontrib><creatorcontrib>Liu, X.-Y</creatorcontrib><creatorcontrib>Niklasson, A. M. N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cawkwell, M. J</au><au>Coe, J. D</au><au>Yadav, S. K</au><au>Liu, X.-Y</au><au>Niklasson, A. M. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-06-09</date><risdate>2015</risdate><volume>11</volume><issue>6</issue><spage>2697</spage><epage>2704</epage><pages>2697-2704</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The extended Lagrangian Born–Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26575565</pmid><doi>10.1021/acs.jctc.5b00143</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2015-06, Vol.11 (6), p.2697-2704
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1735330550
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Extended Lagrangian Formulation of Charge-Constrained Tight-Binding Molecular Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Lagrangian%20Formulation%20of%20Charge-Constrained%20Tight-Binding%20Molecular%20Dynamics&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Cawkwell,%20M.%20J&rft.date=2015-06-09&rft.volume=11&rft.issue=6&rft.spage=2697&rft.epage=2704&rft.pages=2697-2704&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.5b00143&rft_dat=%3Cproquest_cross%3E1735330550%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a336t-8fe6e4c3f7b227d4477e5de908d452383cf649dcf6fefdb148ab9d3e10ef5d6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1735330550&rft_id=info:pmid/26575565&rfr_iscdi=true