Loading…

Internal atmospheric dynamics and tropical indo-pacific climate variability

One possible explanation for tropical sea surface temperature (SST) interannual variability is that it can be accurately described by a linear autoregressive model with damped coupled feedbacks and stochastic forcing. This autoregressive model can be viewed as a “null hypothesis” for tropical SST va...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the atmospheric sciences 2005-07, Vol.62 (7), p.2220-2233
Main Authors: KIRTMAN, Ben P, PEGION, Kathy, KINTER, Saul M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One possible explanation for tropical sea surface temperature (SST) interannual variability is that it can be accurately described by a linear autoregressive model with damped coupled feedbacks and stochastic forcing. This autoregressive model can be viewed as a “null hypothesis” for tropical SST variability. This paper advances a new coupled general circulation model (CGCM) coupling strategy, called an interactive ensemble, as a method to test this null hypothesis. The design of the interactive ensemble procedure is to reduce the stochastic variability in the air–sea fluxes applied to the ocean component while retaining the deterministic component of the coupled feedbacks. The interactive ensemble procedure uses multiple realizations of the atmospheric GCM coupled to a single realization of the ocean GCM. The ensemble mean of the atmospheric GCM fluxes are applied to the ocean model thereby significantly reducing the variability due to internal atmospheric dynamics in the air–sea fluxes. If the null hypothesis is correct, the SST variability is reduced, and the autoregressive model defines how much the variability should be reduced. To test the null hypothesis, the interactive ensemble procedure is applied to a heuristic coupled model. Then the heuristic coupled model is used to interpret the CGCM interactive ensemble results with respect to (i) SST variance and (ii) how the amplitude of atmospheric internal dynamics depends on the evolving background SST anomaly. There are significant regions where the heuristic model fails to reproduce the CGCM results, suggesting that aspects of tropical Indo-Pacific variability in the CGCM cannot be explained by damped coupled feedbacks and stochastic forcing. These regions are largely coincident with regions of large convective anomalies. Surprisingly, significant regions were found in the tropical eastern Pacific where the variability due to internal ocean dynamics cannot be neglected.
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS3449.1