Loading…

Comparison of PCR-RFLP analysis of the ITS region with morphological criteria of various strains of Dunaliella

The genus Dunaliella comprises 28 species defined primarily by morphological and physiological criteria, which vary considerably depending on growth conditions. Concomitantly, the taxonomic status of various species is uncertain. To confirm the taxonomic identity and to better understand the relatio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied phycology 1998-01, Vol.10 (6), p.573-580
Main Authors: GONZALEZ, M. A, GOMEZ, P. I, MONTOYA, R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The genus Dunaliella comprises 28 species defined primarily by morphological and physiological criteria, which vary considerably depending on growth conditions. Concomitantly, the taxonomic status of various species is uncertain. To confirm the taxonomic identity and to better understand the relationship within Dunaliella, seven taxa (D. salina, D. bardawil, D. tertiolecta, D. parva, D. viridis, D. lateralis, D. peircei) were compared using RFLP analysis of the nuclear rDNA repeats, specifically the internal transcribed spacer regions, including the 5.8S rRNA gene. Volvox aureus was used as an outgroup. A single ITS PCR amplification product was obtained for each taxon. An ITS fragment of ca. 640 bp was present in all the taxa within the subgenus Dunaliella, except for D. salina CCMP 1303 (ca. 540 bp) and D. lateralis (subgenus Pascheria) (ca. 600 bp). A cluster analysis based on the presence or absence of bands generated by digestion of the PCR product with 8 restriction endonucleases (DpnI, HhaI, EcoRI, PvuII, TaqI, HaeIII, MspI, StyI) revealed no correlation between the genetic relationship inferred from the ITS-RFLP data and the morpho-physiological attributes used for taxonomy. In addition, differences in morphology, physiology and in the length and restriction fragment patterns of the ITS region of D. salina CCMP 1303 suggest that this strain does not belong to Dunaliella.
ISSN:0921-8971
1573-5176
DOI:10.1023/A:1008035422784