Loading…

Torpor expression in juvenile and adult Djungarian hamsters (Phodopus sungorus) differs in frequency, duration and onset in response to a daily cycle in ambient temperature

In addition to morphological and physiological traits of short-day acclimatisation, Djungarian hamsters (Phodopus sungorus) from Central Asia exhibit spontaneous daily torpor to decrease energy demands during winter. Environmental factors such as food scarcity and low temperatures have been shown to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal biology 2015-10, Vol.53, p.23-32
Main Authors: Diedrich, Victoria, Bank, Jonathan H., Scherbarth, Frank, Steinlechner, Stephan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In addition to morphological and physiological traits of short-day acclimatisation, Djungarian hamsters (Phodopus sungorus) from Central Asia exhibit spontaneous daily torpor to decrease energy demands during winter. Environmental factors such as food scarcity and low temperatures have been shown to facilitate the use of this temporal reduction in metabolism and body temperature. We investigated the effect of a daily cycle in ambient temperature on short-day acclimation and torpor expression in juvenile and adult Djungarian hamsters. The animals were exposed to a cold dark phase (6°C) and a warmer light phase (18°C) and were compared with control hamsters kept at a constant ambient temperature of 18°C. Under constant conditions, torpor expression did not differ between adult and juvenile hamsters. Although the daily temperature cycle evoked an increased metabolic rate in adult and juvenile hamsters during the dark phase and strengthened the synchronization between torpor entrance and the beginning of the light phase, it did not induce the expected torpor facilitation. In adult hamsters, torpor expression profiles did not differ from those under constant conditions at all. In contrast, juvenile hamsters showed a delayed onset of torpor season, a decreased torpor frequency, depth and duration, as well as an increased number of early torpor terminations coinciding with the rise in ambient temperature after the beginning of the light phase. While the temperature challenge appeared to be of minor importance for energy balance and torpor expression in adult hamsters, it profoundly influenced the overall energy saving strategy of juvenile hamsters, promoting torpor-alleviating active foragers over torpor-prone energy-savers. In addition, our data suggest a more efficient acclimation in juvenile hamsters under additional energy challenges, which reduces the need for torpor expression. •Daily torpor does not differ between juvenile and adult Djungarian hamsters.•A daily temperature cycle reduces torpor expression in juvenile hamsters only.•A daily temperature cycle synchronises torpor entrance and resting phase.•A temperature challenge affects energy saving strategies in juvenile hamsters.
ISSN:0306-4565
1879-0992
DOI:10.1016/j.jtherbio.2015.08.006