Loading…
A hybrid artificial bee colony optimizer by combining with life-cycle, Powell’s search and crossover
This paper proposes a hybrid artificial bee colony optimizer (HABC) by restructuring the artificial bee colony system with life-cycle, Powell’s search and social learning. The proposed HABC based on life-cycle is a cooperative and varying-population model where the bee can switch its state periodica...
Saved in:
Published in: | Applied mathematics and computation 2015-02, Vol.252, p.133-154 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a hybrid artificial bee colony optimizer (HABC) by restructuring the artificial bee colony system with life-cycle, Powell’s search and social learning. The proposed HABC based on life-cycle is a cooperative and varying-population model where the bee can switch its state periodically according to the local environmental landscape. Through this new characteristic, two significant merits of reducing redundant search and maintaining diversity of population can be obtained. In addition, with the social learning, the information exchange ability of the bees can be enhanced in the early exploration phase while the Powell’s method enables the bees to deeply exploit around the promising area, which provides an appropriate balance between exploration and exploitation. Then, eight basic benchmarks, seven CEC 2005 composite functions, and a real-world problem of RFID networks optimization are solved by HABC, successively. The experimental results validate the incorporated combinatorial strategies and demonstrate the performance superiority of HABC. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2014.11.104 |