Loading…

Evaluating Hail Damage Using Property Insurance Claims Data

A series of thunderstorms on 24 May 2011 produced significant hail in the Dallas–Fort Worth (DFW) metroplex, resulting in an estimated $876.8 million (U.S. dollars) in insured losses to property and automobiles, according to the Texas Department of Insurance. Insurance claims and policy-in-force dat...

Full description

Saved in:
Bibliographic Details
Published in:Weather, climate, and society climate, and society, 2015-07, Vol.7 (3), p.197-210
Main Authors: Brown, Tanya M., Pogorzelski, William H., Giammanco, Ian M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A series of thunderstorms on 24 May 2011 produced significant hail in the Dallas–Fort Worth (DFW) metroplex, resulting in an estimated $876.8 million (U.S. dollars) in insured losses to property and automobiles, according to the Texas Department of Insurance. Insurance claims and policy-in-force data were obtained from five insurance companies for more than 67000 residential properties located in 20 ZIP codes. The methodology for selecting the 20 ZIP codes is described. This study evaluates roofing material type with regard to resiliency to hailstone impacts and relative damage costs associated with roofing systems versus wall systems. A comparison of Weather Surveillance Radar-1988 Doppler (WSR-88D) radar-estimated hail sizes and damage levels seen in the claims data is made. Recommendations for improved data collection and quality of insurance claims data, as well as guidance for future property insurance claims studies, are summarized. Studies such as these allow insurance underwriters and claims adjusters to better evaluate the relative performance and vulnerability of various roofing systems and other building components as a function of hail size. They also highlight the abilities and limitations of utilizing radar horizontal reflectivity-based hail sizes, local storm reports, andStorm Datafor claims processing. Large studies of this kind may be able to provide guidance to consumers, designers, and contractors concerning building product selections for improved resiliency to hailstorms, and give a glimpse into how product performance varies with storm exposure. Reducing hail losses would reduce the financial burden on property owners and insurers and reduce the amount of building materials being disposed of after storms.
ISSN:1948-8327
1948-8335
1948-8335
1948-8327
DOI:10.1175/WCAS-D-15-0011.1