Loading…

Parameter investigation for decentralised dewatering and solar thermic drying of sludge

The purpose of this paper is an experimental and model assisted investigation of the capabilities of a dewatering system for sewage sludge for decentralised sites. Laboratory and field tests are performed with different initial conditions and the influences of filter medium, initial height, initial...

Full description

Saved in:
Bibliographic Details
Published in:Water science and technology 2005-01, Vol.51 (10), p.65-73
Main Authors: Wett, B, Demattio, M, Becker, W
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this paper is an experimental and model assisted investigation of the capabilities of a dewatering system for sewage sludge for decentralised sites. Laboratory and field tests are performed with different initial conditions and the influences of filter medium, initial height, initial total suspended solids, temperature and relative humidity are discussed. The experimental work shows the feasibility of geotextile media for dewatering high water content sewage sludge and that the textile structure is of secondary importance. The specific filter resistance of the sludge cake is found to be the most significant factor in dewatering applications. The mathematical description of the dewatering process is based on the superposition of two models, the Conventional Filtration Theory for the filtration phase and the BT-model for the drying phase. Feasibility and limits of the theoretical approach are evaluated by means of a comparison between measurements and simulated data of cyclic reloading tests. It is found that a better filtration efficiency is achieved at higher TSS and at lower initial height of the slurry layer. Due to the viscosity decrease, a higher temperature enhances not only evaporation, but also filtration rate.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2005.0352