Loading…

Multivariate determination of free fatty acids and moisture in fish oils by partial least-squares regression and near-infrared spectroscopy

The oxidative and hydrolytic degradation of lipids in fish oil was monitored using partial least-squares (PLS) regression and near-infrared reflectance (NIR) spectroscopy. One hundred and sixty ( n=160) fish oil samples from a fishmeal factory were scanned in transflectance by an NIR monochromator i...

Full description

Saved in:
Bibliographic Details
Published in:Food science & technology 2005-12, Vol.38 (8), p.821-828
Main Authors: Cozzolino, D., Murray, I., Chree, A., Scaife, J.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The oxidative and hydrolytic degradation of lipids in fish oil was monitored using partial least-squares (PLS) regression and near-infrared reflectance (NIR) spectroscopy. One hundred and sixty ( n=160) fish oil samples from a fishmeal factory were scanned in transflectance by an NIR monochromator instrument (1100–2500 nm). Calibration models were performed for free fatty acids (FFA), moisture (M), peroxide value (PV) and anisidine value (AV). Coefficients of determination in calibration ( R 2) and standard errors of cross validation (SECV) were 0.96 (SECV: 0.59) and 0.94 (SECV: 0.03) for FFA and M in g/kg, respectively. The accuracy of the NIR calibration models were tested using a validation set, yielding coefficients of correlation ( r) and standard errors of prediction (SEP) of 0.98 (SEP: 0.50) and 0.80 (SEP: 0.05) for FFA and M in g/kg, respectively. Poor accuracy ( R 2
ISSN:0023-6438
1096-1127
DOI:10.1016/j.lwt.2004.10.007