Loading…

Multivariate determination of free fatty acids and moisture in fish oils by partial least-squares regression and near-infrared spectroscopy

The oxidative and hydrolytic degradation of lipids in fish oil was monitored using partial least-squares (PLS) regression and near-infrared reflectance (NIR) spectroscopy. One hundred and sixty ( n=160) fish oil samples from a fishmeal factory were scanned in transflectance by an NIR monochromator i...

Full description

Saved in:
Bibliographic Details
Published in:Food science & technology 2005-12, Vol.38 (8), p.821-828
Main Authors: Cozzolino, D., Murray, I., Chree, A., Scaife, J.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-6a467e9d6e0dc7860cbb35a5540cce4459f52a5aed87545ba0f7360bf8916b853
cites cdi_FETCH-LOGICAL-c448t-6a467e9d6e0dc7860cbb35a5540cce4459f52a5aed87545ba0f7360bf8916b853
container_end_page 828
container_issue 8
container_start_page 821
container_title Food science & technology
container_volume 38
creator Cozzolino, D.
Murray, I.
Chree, A.
Scaife, J.R.
description The oxidative and hydrolytic degradation of lipids in fish oil was monitored using partial least-squares (PLS) regression and near-infrared reflectance (NIR) spectroscopy. One hundred and sixty ( n=160) fish oil samples from a fishmeal factory were scanned in transflectance by an NIR monochromator instrument (1100–2500 nm). Calibration models were performed for free fatty acids (FFA), moisture (M), peroxide value (PV) and anisidine value (AV). Coefficients of determination in calibration ( R 2) and standard errors of cross validation (SECV) were 0.96 (SECV: 0.59) and 0.94 (SECV: 0.03) for FFA and M in g/kg, respectively. The accuracy of the NIR calibration models were tested using a validation set, yielding coefficients of correlation ( r) and standard errors of prediction (SEP) of 0.98 (SEP: 0.50) and 0.80 (SEP: 0.05) for FFA and M in g/kg, respectively. Poor accuracy ( R 2
doi_str_mv 10.1016/j.lwt.2004.10.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17371107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0023643804002865</els_id><sourcerecordid>17371107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-6a467e9d6e0dc7860cbb35a5540cce4459f52a5aed87545ba0f7360bf8916b853</originalsourceid><addsrcrecordid>eNp9kM1u1TAQhSMEEpfCA7DCG9jlMk78k4gVqvipVMQCurYmzrj4KjdObafoPgMvjcOtxK6zGc34O0fjU1WvOew5cPX-sJ9-530DIMq8B9BPqh2HXtWcN_pptQNo2lqJtntevUjpAKVE0-2qP9_WKft7jB4zsZEyxaOfMfsws-CYi0TMYc4nhtaPieE8smPwKa-RmJ-Z8-kXC35KbDixBWP2OLGJMOU63a0YKbFIt6WlzXFTz4Sx9rOL5XFkaSGbY0g2LKeX1TOHU6JXD_2iuvn86efl1_r6-5ery4_XtRWiy7VCoTT1oyIYre4U2GFoJUopwFoSQvZONiiRxk5LIQcEp1sFg-t6roZOthfVu7PvEsPdSimbo0-WpglnCmsyXLeac9AF5GfQlgtTJGeW6I8YT4aD2WI3B1NiN1vs2wr-ad4-mGOyOJVvztan_0INUkEnCvfmzDkMBm9jYW5-NMBb4NAo0XeF-HAmqGRx7ymaZD3NlkYfS2hmDP6RO_4CNfqkjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17371107</pqid></control><display><type>article</type><title>Multivariate determination of free fatty acids and moisture in fish oils by partial least-squares regression and near-infrared spectroscopy</title><source>ScienceDirect Journals</source><creator>Cozzolino, D. ; Murray, I. ; Chree, A. ; Scaife, J.R.</creator><creatorcontrib>Cozzolino, D. ; Murray, I. ; Chree, A. ; Scaife, J.R.</creatorcontrib><description>The oxidative and hydrolytic degradation of lipids in fish oil was monitored using partial least-squares (PLS) regression and near-infrared reflectance (NIR) spectroscopy. One hundred and sixty ( n=160) fish oil samples from a fishmeal factory were scanned in transflectance by an NIR monochromator instrument (1100–2500 nm). Calibration models were performed for free fatty acids (FFA), moisture (M), peroxide value (PV) and anisidine value (AV). Coefficients of determination in calibration ( R 2) and standard errors of cross validation (SECV) were 0.96 (SECV: 0.59) and 0.94 (SECV: 0.03) for FFA and M in g/kg, respectively. The accuracy of the NIR calibration models were tested using a validation set, yielding coefficients of correlation ( r) and standard errors of prediction (SEP) of 0.98 (SEP: 0.50) and 0.80 (SEP: 0.05) for FFA and M in g/kg, respectively. Poor accuracy ( R 2&lt;0.80) was obtained for the NIR calibration models developed for PV and AV. The paper demonstrates that fish oil hydrolytic degradation of lipids, which seriously affect oil use and storage under industrial conditions, can be successfully monitored using PLS regression and NIR spectroscopy by the fishmeal industry.</description><identifier>ISSN: 0023-6438</identifier><identifier>EISSN: 1096-1127</identifier><identifier>DOI: 10.1016/j.lwt.2004.10.007</identifier><identifier>CODEN: LBWTAP</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>anisidine value ; Biological and medical sciences ; chemical analysis ; Fat industries ; fatty acid composition ; Fish oil ; fish oils ; food analysis ; Food industries ; Free fatty acids ; Fundamental and applied biological sciences. Psychology ; least squares ; Lipid oxidation ; lipid peroxidation ; lipids ; model validation ; Moisture ; multivariate analysis ; Near-infrared spectroscopy ; NIR ; oxidation ; Partial least squares ; peroxide value ; Peroxides ; Pisces ; rancidity ; water content</subject><ispartof>Food science &amp; technology, 2005-12, Vol.38 (8), p.821-828</ispartof><rights>2004 Swiss Society of Food Science and Technology</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-6a467e9d6e0dc7860cbb35a5540cce4459f52a5aed87545ba0f7360bf8916b853</citedby><cites>FETCH-LOGICAL-c448t-6a467e9d6e0dc7860cbb35a5540cce4459f52a5aed87545ba0f7360bf8916b853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17056084$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cozzolino, D.</creatorcontrib><creatorcontrib>Murray, I.</creatorcontrib><creatorcontrib>Chree, A.</creatorcontrib><creatorcontrib>Scaife, J.R.</creatorcontrib><title>Multivariate determination of free fatty acids and moisture in fish oils by partial least-squares regression and near-infrared spectroscopy</title><title>Food science &amp; technology</title><description>The oxidative and hydrolytic degradation of lipids in fish oil was monitored using partial least-squares (PLS) regression and near-infrared reflectance (NIR) spectroscopy. One hundred and sixty ( n=160) fish oil samples from a fishmeal factory were scanned in transflectance by an NIR monochromator instrument (1100–2500 nm). Calibration models were performed for free fatty acids (FFA), moisture (M), peroxide value (PV) and anisidine value (AV). Coefficients of determination in calibration ( R 2) and standard errors of cross validation (SECV) were 0.96 (SECV: 0.59) and 0.94 (SECV: 0.03) for FFA and M in g/kg, respectively. The accuracy of the NIR calibration models were tested using a validation set, yielding coefficients of correlation ( r) and standard errors of prediction (SEP) of 0.98 (SEP: 0.50) and 0.80 (SEP: 0.05) for FFA and M in g/kg, respectively. Poor accuracy ( R 2&lt;0.80) was obtained for the NIR calibration models developed for PV and AV. The paper demonstrates that fish oil hydrolytic degradation of lipids, which seriously affect oil use and storage under industrial conditions, can be successfully monitored using PLS regression and NIR spectroscopy by the fishmeal industry.</description><subject>anisidine value</subject><subject>Biological and medical sciences</subject><subject>chemical analysis</subject><subject>Fat industries</subject><subject>fatty acid composition</subject><subject>Fish oil</subject><subject>fish oils</subject><subject>food analysis</subject><subject>Food industries</subject><subject>Free fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>least squares</subject><subject>Lipid oxidation</subject><subject>lipid peroxidation</subject><subject>lipids</subject><subject>model validation</subject><subject>Moisture</subject><subject>multivariate analysis</subject><subject>Near-infrared spectroscopy</subject><subject>NIR</subject><subject>oxidation</subject><subject>Partial least squares</subject><subject>peroxide value</subject><subject>Peroxides</subject><subject>Pisces</subject><subject>rancidity</subject><subject>water content</subject><issn>0023-6438</issn><issn>1096-1127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1TAQhSMEEpfCA7DCG9jlMk78k4gVqvipVMQCurYmzrj4KjdObafoPgMvjcOtxK6zGc34O0fjU1WvOew5cPX-sJ9-530DIMq8B9BPqh2HXtWcN_pptQNo2lqJtntevUjpAKVE0-2qP9_WKft7jB4zsZEyxaOfMfsws-CYi0TMYc4nhtaPieE8smPwKa-RmJ-Z8-kXC35KbDixBWP2OLGJMOU63a0YKbFIt6WlzXFTz4Sx9rOL5XFkaSGbY0g2LKeX1TOHU6JXD_2iuvn86efl1_r6-5ery4_XtRWiy7VCoTT1oyIYre4U2GFoJUopwFoSQvZONiiRxk5LIQcEp1sFg-t6roZOthfVu7PvEsPdSimbo0-WpglnCmsyXLeac9AF5GfQlgtTJGeW6I8YT4aD2WI3B1NiN1vs2wr-ad4-mGOyOJVvztan_0INUkEnCvfmzDkMBm9jYW5-NMBb4NAo0XeF-HAmqGRx7ymaZD3NlkYfS2hmDP6RO_4CNfqkjw</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Cozzolino, D.</creator><creator>Murray, I.</creator><creator>Chree, A.</creator><creator>Scaife, J.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>200512</creationdate><title>Multivariate determination of free fatty acids and moisture in fish oils by partial least-squares regression and near-infrared spectroscopy</title><author>Cozzolino, D. ; Murray, I. ; Chree, A. ; Scaife, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-6a467e9d6e0dc7860cbb35a5540cce4459f52a5aed87545ba0f7360bf8916b853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>anisidine value</topic><topic>Biological and medical sciences</topic><topic>chemical analysis</topic><topic>Fat industries</topic><topic>fatty acid composition</topic><topic>Fish oil</topic><topic>fish oils</topic><topic>food analysis</topic><topic>Food industries</topic><topic>Free fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>least squares</topic><topic>Lipid oxidation</topic><topic>lipid peroxidation</topic><topic>lipids</topic><topic>model validation</topic><topic>Moisture</topic><topic>multivariate analysis</topic><topic>Near-infrared spectroscopy</topic><topic>NIR</topic><topic>oxidation</topic><topic>Partial least squares</topic><topic>peroxide value</topic><topic>Peroxides</topic><topic>Pisces</topic><topic>rancidity</topic><topic>water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cozzolino, D.</creatorcontrib><creatorcontrib>Murray, I.</creatorcontrib><creatorcontrib>Chree, A.</creatorcontrib><creatorcontrib>Scaife, J.R.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Food science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cozzolino, D.</au><au>Murray, I.</au><au>Chree, A.</au><au>Scaife, J.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate determination of free fatty acids and moisture in fish oils by partial least-squares regression and near-infrared spectroscopy</atitle><jtitle>Food science &amp; technology</jtitle><date>2005-12</date><risdate>2005</risdate><volume>38</volume><issue>8</issue><spage>821</spage><epage>828</epage><pages>821-828</pages><issn>0023-6438</issn><eissn>1096-1127</eissn><coden>LBWTAP</coden><abstract>The oxidative and hydrolytic degradation of lipids in fish oil was monitored using partial least-squares (PLS) regression and near-infrared reflectance (NIR) spectroscopy. One hundred and sixty ( n=160) fish oil samples from a fishmeal factory were scanned in transflectance by an NIR monochromator instrument (1100–2500 nm). Calibration models were performed for free fatty acids (FFA), moisture (M), peroxide value (PV) and anisidine value (AV). Coefficients of determination in calibration ( R 2) and standard errors of cross validation (SECV) were 0.96 (SECV: 0.59) and 0.94 (SECV: 0.03) for FFA and M in g/kg, respectively. The accuracy of the NIR calibration models were tested using a validation set, yielding coefficients of correlation ( r) and standard errors of prediction (SEP) of 0.98 (SEP: 0.50) and 0.80 (SEP: 0.05) for FFA and M in g/kg, respectively. Poor accuracy ( R 2&lt;0.80) was obtained for the NIR calibration models developed for PV and AV. The paper demonstrates that fish oil hydrolytic degradation of lipids, which seriously affect oil use and storage under industrial conditions, can be successfully monitored using PLS regression and NIR spectroscopy by the fishmeal industry.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.lwt.2004.10.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0023-6438
ispartof Food science & technology, 2005-12, Vol.38 (8), p.821-828
issn 0023-6438
1096-1127
language eng
recordid cdi_proquest_miscellaneous_17371107
source ScienceDirect Journals
subjects anisidine value
Biological and medical sciences
chemical analysis
Fat industries
fatty acid composition
Fish oil
fish oils
food analysis
Food industries
Free fatty acids
Fundamental and applied biological sciences. Psychology
least squares
Lipid oxidation
lipid peroxidation
lipids
model validation
Moisture
multivariate analysis
Near-infrared spectroscopy
NIR
oxidation
Partial least squares
peroxide value
Peroxides
Pisces
rancidity
water content
title Multivariate determination of free fatty acids and moisture in fish oils by partial least-squares regression and near-infrared spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T09%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20determination%20of%20free%20fatty%20acids%20and%20moisture%20in%20fish%20oils%20by%20partial%20least-squares%20regression%20and%20near-infrared%20spectroscopy&rft.jtitle=Food%20science%20&%20technology&rft.au=Cozzolino,%20D.&rft.date=2005-12&rft.volume=38&rft.issue=8&rft.spage=821&rft.epage=828&rft.pages=821-828&rft.issn=0023-6438&rft.eissn=1096-1127&rft.coden=LBWTAP&rft_id=info:doi/10.1016/j.lwt.2004.10.007&rft_dat=%3Cproquest_cross%3E17371107%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-6a467e9d6e0dc7860cbb35a5540cce4459f52a5aed87545ba0f7360bf8916b853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17371107&rft_id=info:pmid/&rfr_iscdi=true